194
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A narrative review on the role of folate-mediated one-carbon metabolism and its associated gene polymorphisms in posing risk to preeclampsia

, ORCID Icon, &
Pages 487-504 | Received 10 Oct 2020, Accepted 20 Mar 2021, Published online: 29 May 2021

References

  • Kovo M, Schreiber L, Ben-Haroush A, Gold E, Golan A, Bar J. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat Diagn. 2012;32(7):632–37. doi:10.1002/pd.3872.
  • Armaly Z, Jadaon JE, Jabbour A, Abassi ZA. Preeclampsia: novel mechanisms and potential therapeutic approaches. Front Physiol. 2018 Jul 25;9(JUL):973. doi:10.3389/fphys.2018.00973.
  • George EM, Granger JP. Recent insights into the pathophysiology of preeclampsia. Expert  Review of Obstetrics & Gynecology. 2010;5(5):557–66. doi:10.1586/eog.10.45.
  • Madazli R, Yuksel MA, Imamoglu M, Tuten A, Oncul M, Aydin B, Demirayak G. Comparison of clinical and perinatal outcomes in early- and late-onset preeclampsia. Arch Gynecol Obstet. 2014 Feb 19;290(1):53–57. doi:10.1007/s00404-014-3176-x.
  • Williams D. Long-Term complications of preeclampsia. Semin Nephrol. 2011 Jan 1;31(1):111–22. doi:10.1016/j.semnephrol.2010.10.010.
  • Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016 Jun 6;11(6):1102–13. doi:10.2215/CJN.12081115.
  • English FA, Kenny LC, McCarthy FP. Risk factors and effective management of preeclampsia. Integr Blood Press Control. 2015 Mar 3;8:7–12. doi:10.2147/IBPC.S50641.
  • Alshaikh B, Salman O, Soliman N, Ells A, Yusuf K. Pre-eclampsia and the risk of retinopathy of prematurity in preterm infants with birth weight <1500 g and/or <31 weeks’ gestation. BMJ Open Ophthalmol. 2017 Jun 1;1(1):e000049. doi:10.1136/bmjophth-2016-000049.
  • Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003 Jul 1;69(1):1–7. doi:10.1095/biolreprod.102.014977.
  • Brosens I. A study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. BJOG An Int J Obstet Gynaecol. 1964 Apr 1;71(2):222–30. doi:10.1111/j.1471-0528.1964.tb04270.x.
  • Huppertz B. The critical role of abnormal trophoblast development in the etiology of preeclampsia. Curr Pharm Biotechnol. 2018;19(10):771–80. doi:10.2174/1389201019666180427110547.
  • Von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertension in pregnancy. 2003;22(2):143-8.doi:10.1081/PRG-120021060.
  • Paruk F, Moodley J. Maternal and neonatal outcome in early- and late-onset pre-eclampsia. Semin Neonatol. 2000 Aug 1;5(3):197–207. doi:10.1053/siny.2000.0023.
  • Esplin MS, Fausett MB, Fraser A, Kerber R, Mineau G, Carrillo J, Varner MW. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med. 2001 Mar 22;344(12):867–72. doi:10.1056/NEJM200103223441201.
  • Froese DS, Fowler B, Baumgartner MR. Vitamin B 12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis. 2019 Jul 1;42(4):673–85. doi:10.1002/jimd.12009.
  • Bailey LB. Folate in health and disease. 2nd ed. United States (US):CRC Press: 2010. 2-6 p.
  • Zappacosta B, Mastroiacovo P, Persichilli S, Pounis G, Ruggeri S, Minucci A, carnovale E, Andria G, Ricci R, Scala I. Homocysteine Lowering by folate-rich diet or pharmacological supplementations in subjects with moderate hyperhomocysteinemia. Nutrients. 2013 May 8;5(5):1531–43. doi:10.3390/nu5051531.
  • Fenech M, Noakes M, Clifton P, Topping D. Aleurone flour is a rich source of bioavailable folate in humans. J Nutr. [Internet]. 1999;129(6):1114–19. Available from: https://academic.oup.com/jn/article/129/6/1114/4721961
  • Liu J, Ward RL. Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. 2010 ; 71: 79-121.
  • Mc Auley MT. Computer modelling for nutritionists. Cham: Springer International Publishing; 2019.
  • Ducker GS, Rabinowitz JD. One-Carbon metabolism in health and disease. Cell Metab. 2017 Jan 10;25(1):27–42. doi:10.1016/j.cmet.2016.08.009.
  • Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. Wiley Interdiscip Rev Syst Biol Med. 2013;5(3):343–65. doi:10.1002/wsbm.1209.
  • Fox JT, Stover PJ. Folate- Mediated One- Carbon Metabolism. In: Litwack G, editor. Vitamins and Hormones. Vol. 79. Academic Press; 2008. p. 1-44.
  • Horne DW, Patterson D, Cook RJ. Effect of nitrous oxide inactivation of vitamin B12-dependent methionine synthetase on the subcellular distribution of folate coenzymes in rat liver. Arch Biochem Biophys. 1989 May 1;270(2):729–33. doi:10.1016/0003-9861(89)90556-0.
  • Lins B-F, Fen R, Huang S, Shanes B, Shanes B. Regulation of folate and one-carbon metabolism in mammalian cells III. Role of mitochondrial folylpoly-gamma-glutamate synthetase. The Journal of Biological Chemistry. 1993;268(29):21674–79. doi:10.1016/S0021-9258(20)80594-8.
  • Tibbetts AS, Appling DR. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annual Review of Nutrition. 2010;30:57–81.doi:10.1146/annurev.nutr.012809.104810.
  • Ulrich CM, Reed MC, Nijhout HF. Modeling folate, one-carbon metabolism, and DNA methylation. Nutr Rev. 2008 Jul 29;66(SUPPL.1):S27–30. doi:10.1111/j.1753-4887.2008.00062.x.
  • Luciano-Mateo F, Hernández-Aguilera A, Cabre N, Camps J, Fernández-Arroyo S, Lopez-Miranda J, Menendez JA, Joven J. Nutrients in Energy and one-carbon metabolism: learning from metformin users. Nutrients. [Internet]. 2017 Feb 10 [cited 2020 Jun 7];9(2):121. Available from: http://www.mdpi.com/2072-6643/9/2/121
  • Shuvalov O, Petukhov A, Daks A, Fedorova O, Vasileva E, Barlev NA. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget. 2017;8(14):23955–77. doi:10.18632/oncotarget.15053.
  • Moulik NR, Kumar A, Agrawal S. Folic acid, one-carbon metabolism & childhood cancer. Indian J Med Res. 2017 Aug 1;146(August):163–74. doi:10.4103/ijmr.IJMR_275_15.
  • Grillo MA, Colombatto S. S-adenosylmethionine and its products. Amino Acids. 2008 Feb 3;34(2):187–93. doi:10.1007/s00726-007-0500-9.
  • Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013 Aug 4;13(8):572–83. doi:10.1038/nrc3557.
  • Landau G, Bercovich Z, Park MH, Kahana C. The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J Biol Chem. 2010 Apr 23;285(17):12474–81. doi:10.1074/jbc.M110.106419.
  • Corbin J, Ruiz-Echevarría M. One-Carbon metabolism in prostate cancer: the role of androgen signaling. Int J Mol Sci. 2016 Jul 27;17(8):1208. doi:10.3390/ijms17081208.
  • Prudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R. S-adenosylmethionine stabilizes cystathionine β-synthase and modulates redox capacity. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6489–94. doi:10.1073/pnas.0509531103.
  • Yajnik CS, Deshmukh US. Fetal programming: maternal nutrition and role of one-carbon metabolism. Rev Endocr Metab Disord. 2012 Jun 14;13(2):121–27. doi:10.1007/s11154-012-9214-8.
  • Koletzko B Dodds P, Akerblom H, Ashwell M.Early nutrition and its later consequences: new opportunities. Netherlands (NL): Springer; 2005. p 1-12. Available from: http://link.springer.com/10.1007/1-4020-3535-7_1
  • Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, Fullford AJ, Guan Y, Laritsky E, Silver MJ. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014 Apr 29;5(1):1–7. doi:10.1038/ncomms4746.
  • Yajnik CS, Deshmukh US. Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev Endocr Metab Disord. 2008 Sep 26;9(3):203–11. doi:10.1007/s11154-008-9087-z.
  • Kim JM, Hong K, Lee JH, Lee S, Chang N. Effect of folate deficiency on placental DNA methylation in hyperhomocysteinemic rats. J Nutr Biochem. 2009;20(3):172–76. doi:10.1016/j.jnutbio.2008.01.010.
  • Williams PJ, Bulmer JN, Innes BA, Broughton Pipkin F. Possible roles for folic acid in the regulation of trophoblast invasion and placental development in normal early human pregnancy1. Biol Reprod. 2011;84(6):1148–53. doi:10.1095/biolreprod.110.088351.
  • Kasture VV, Sundrani DP, Joshi SR. Maternal one carbon metabolism through increased oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia. Life Sci. 2018;206(2017):61–69. doi:10.1016/j.lfs.2018.05.029.
  • Di Simone N, Riccardi P, Maggiano N, Piacentani A, D’Asta M, Capelli A, Caruso A. Effect of folic acid on homocysteine-induced trophoblast apoptosis. Mol Hum Reprod. 2004;10(9):665–69. doi:10.1093/molehr/gah091.
  • Boxmeer JC, Brouns RM, Lindemans J, Steegers EAP, Martini E, Macklon NS, Theunissen RP. Preconception folic acid treatment affects the microenvironment of the maturing oocyte in humans. Fertil Steril. 2008;89(6):1766–70. doi:10.1016/j.fertnstert.2007.06.036.
  • Szymański W, Kazdepka-Ziemińska A. Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity. Ginekol Pol. 2003 Oct 1;74(10):1392–96.
  • Canbakan B, Keven K, Tutkak H, Danisman N, Ergun I, Nergizoglu G. Circulating endothelial cells in preeclampsia. J Hum Hypertens. 2007;21(7):558–63. doi:10.1038/sj.jhh.1002199.
  • Steegers EAP, Peters WHM. Hyperhomocysteinaemia : a risk factor for preeclampsia? Eur J Clin Chem Clin Biochem. 2001;95(2):226–28. doi:10.1016/S0301-2115(00)00497-8
  • Hasanzadeh M, Ayatollahi H, Farzadnia M, Ayati S, Khoob MK. Elevated plasma total homocysteine in preeclampsia. Saudi Med J. 2008;29(6):875–78.
  • Khosrowbeygi A, Ahmadvand H. Circulating levels of homocysteine in preeclamptic women. Bangladesh Med Res Counc Bull. 2011;37(3):106–09. doi:10.3329/bmrcb.v37i3.6196.
  • Boxmeer JC, Steegers-Theunissen RPM, Lindemans J, Wildhagen MF, Martini E, Steegers EA, Macklon NS. Homocysteine metabolism in the pre-ovulatory follicle during ovarian stimulation. Hum Reprod. 2008;23(11):2570–76. doi:10.1093/humrep/den292.
  • Andersson A, Hultberg B, Brattström L, Isaksson A. Decreased serum homocysteine in pregnancy. Eur J Clin Chem Clin Biochem. [Internet]. 1992;30:377–79. Available from: https://www.degruyter.com/view/j/cclm.1992.30.issue-6/cclm.1992.30.6.377/cclm.1992.30.6.377.xml
  • Pisal H, Dangat K, Randhir K, Khaire A, Mehendale S, Joshi S. Higher maternal plasma folate, vitamin B12 and homocysteine levels in women with preeclampsia. J Hum Hypertens. 2019;33(5):393–99. doi:10.1038/s41371-019-0164-4.
  • Sun F, Qian W, Zhang C, Fan JX, Huang HF. Correlation of maternal serum homocysteine in the first trimester with the development of gestational hypertension and preeclampsia. Med Sci Monit. 2017 Nov 13;23:5396–401. doi:10.12659/MSM.905055.
  • Kharb S, Aggarwal D, Bala J, Nanda S. Evaluation of homocysteine, vitamin B12 and folic acid levels during all the trimesters in pregnant and preeclamptic womens. Curr Hypertens Rev. 2016;12(3):234–38. doi:10.2174/1573402112666161010151632.
  • Zhao H, Zeng X. Clinical influence of maternal serum homocysteine, folate and vitamin B12 in the development of pre-eclampsia. Pteridines. 2019 Feb 1;30(1):48–53. doi:10.1515/pteridines-2019-0006.
  • Hankey GJ, Eikelboom JW. Homocysteine and vascular disease.The lancet. 1999;354(9176):407-13. doi:10.1016/S0140-6736(98)11058-9.
  • Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. Am Soc Clin Investig. 1996;98(1):5–7. doi:10.1172/JCI118776.
  • Hubel CA, McLaughlin MK, Evans RW, Hauth BA, Sims CJ, Roberts JM. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol. 1996 Mar 1;174(3):975–82. doi:10.1016/S0002-9378(96)70336-8.
  • Esse R, Barroso M, Tavares De Almeida I, Castro R. The Contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art. Int J Mol Sci. 2019 Feb 17;20(4):867. doi:10.3390/ijms20040867.
  • Majors A, Allen Ehrhart L, Pezacka EH. Homocysteine as a risk factor for vascular disease: enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17(10):2074–81. doi:10.1161/01.ATV.17.10.2074.
  • Topal G, Brunet A, Millanvoye E, Boucher JL, Rendu F, Devynck MA, David-Dufilho M. Homocysteine induces oxidative stress by uncoupling of no synthase activity through reduction of tetrahydrobiopterin. Free Radic Biol Med. 2004 Jun 15;36(12):1532–41. doi:10.1016/j.freeradbiomed.2004.03.019.
  • Gupta S, Agarwal A, Sharma RK. The Role of placental oxidative stress and lipid peroxidation in preeclampsia. Obstet Gynecol Surv. 2005Dec;60(12):807–16. doi:10.1097/01.ogx.0000193879.79268.59.
  • Upchurch GR, Welche GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF, Loscalzo J. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem. 1997;272(27):17012–17. doi:10.1074/jbc.272.27.17012.
  • Motta-Mejia C, Kandzija N, Zhang W, Mhlomi V, Cerdeira AS, Burdujan A, Tannetta D, Dragovic R, Sargent IL, Redman CW. Placental vesicles carry active endothelial nitric oxide synthase and their activity is reduced in preeclampsia. Hypertension. 2017 Aug 1;70(2):372–81. doi:10.1161/HYPERTENSIONAHA.117.09321.
  • Pushpakumar S, Kundu S, Sen U. Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem. 2014;21(32):3662–72. doi:10.2174/0929867321666140706142335.
  • Di MG, Davi G, Margaglione M, Cirillo F, Grandone E, Ciabattoni G, Catalano I, Strisciuglio P, Andria G, Patrono C. Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-Sensitive mechanism. Am J Hum Genet. 1993;92:202. doi:10.1172/JCI116715
  • Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ, Kohl B, Rao V, Kisiel W. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest. 2001 Mar 15;107(6):675–83. doi:10.1172/JCI10588.
  • Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem. 2001;276(38):35867–74. doi:10.1074/jbc.M100747200.
  • Dionisio N, Jardin I, Salido G M, Rosado J A. Homocysteine, intracellular signaling and thrombotic disorders. Curr Med Chem. 2010 Jul 24;17(27):3109–31191. doi:10.2174/092986710791959783.
  • Maru L, Verma M, Jinsiwale N. Homocysteine as predictive marker for pregnancy-induced hypertension—A comparative study of homocysteine levels in normal versus patients of PIH and its complications. J Obstet Gynecol India. 2016 Oct 1;66(1):167–71. doi:10.1007/s13224-015-0832-4.
  • Yilmaz H, Unlüçerçi Y, Gürdöl F, Isbilen E, Isbir T. Association of pre-eclampsia with hyperhomocysteinaemia and methylenetetrahydrofolate reductase gene C677T polymorphism in a Turkish population. Aust New Zeal J Obstet Gynaecol. 2004 Oct 1;44(5):423–27. doi:10.1111/j.1479-828X.2004.00283.x.
  • Mignini LE, Latthe PM, Villar J, Kilby MD, Carroli G, Khan KS. Mapping the theories of preeclampsia: the role of homocysteine. Obstet Gynecol. 2005 Feb;105(2):411–25. doi:10.1097/01.AOG.0000151117.52952.b6.
  • Kharb S, Nanda S. Patterns of Biomarkers in cord blood during pregnancy and preeclampsia. Curr Hypertens Rev. 2017 Feb 23;13(1):57–64. doi:10.2174/1573402113666170126101914.
  • Huang Q, Mo Q, Xie Z, Huang B. Effects of folic acid and vitamin therapy on Hcy metabolism, endothelial injury and placental blood perfusion of preeclampsia patients. J Hainan Med Univ. 2018;24(2015):37–41.
  • Cnattingius S, Reilly M, Pawitan Y, Lichtenstein P. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet. 2004;130 A(4):365–71. doi:10.1002/ajmg.a.30257.
  • Daubner SC, Matthews RG. Purification and properties of methylenetetrahydrofolate reductase from pig liver. J Biol Chem. 1982;257(1):140–45. doi:10.1016/S0021-9258(19)68337-7.
  • Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boes GJ, Den Heijer M, Kluijtmans LA, Van Den Heuve LP. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–13. doi:10.1038/ng0595-111.
  • Goyette P, Sumner JS, Milos R, Duncan AMV, Rosenblatt DS, Matthews RG, Rozen R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet. 1994 Jun;7(2):195–200. doi:10.1038/ng0694-195.
  • Yamada K, Chen Z, Rozen R, Matthews RG. Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase. Proc Natl Acad Sci U S A. [ [Internet]. 2001 ;98(26):14853–58. Available from: https://www.pnas.org/content/98/26/14853.short
  • Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72. doi:10.1006/mgme.1998.2714.
  • Mohammadpour-Gharehbagh A, Salimi S, Keshavarzi F, Saeidian F, Mousavi M, Teimoori B, Esmaeilipour M, Mokhtari M. Genetic variants in 3′-UTRs of MTHFR in the pregnancies complicated with preeclampsia and bioinformatics analysis. J Cell Biochem. 2018 Jan 1;119(1):773–81. doi:10.1002/jcb.26240.
  • Pérez-Mutul J, González-Herrera L, Sosa-Cabrera T, Martínez-Olivares R. A mutation in the 5,10-methylenetetrahydrofolate reductase gene is not associated with preeclampsia in women of southeast Mexico. Arch Med Res. 2004 May 1;35(3):231–34. doi:10.1016/j.arcmed.2004.02.004.
  • Cristalli CP, Zannini C, Comai G, Baraldi O, Cuna V, Cappuccilli M, Mantovani V, Natali N, Cianciolo G, La Manna G. Methylenetetrahydrofolate reductase, MTHFR, polymorphisms and predisposition to different multifactorial disorders. Genes and Genomics. 2017;39(7):689-99.doi:10.1007/s13258-017-0552-5.
  • Böttiger AK, Hurtig-Wennlöf A, Sjöström M, Yngve A, Nilsson TK. Association of total plasma homocysteine with methylenetetrahydrofolate reductase genotypes 677C>T, 1298A>C, and 1793G>A and the corresponding haplotypes in Swedish children and adolescents. Int J Mol Med. 2007 Apr 1;19(4):659–65. doi:10.3892/ijmm.19.4.659.
  • Yoshida A, Miura K, Nakayama D, Masuzaki H. Correlation between preeclampsia and prevalence of polymorphism of angiotensinogen, methyleneteterahydrofolate reductase and factor V, prothrombin genes among Japanese women. Acta Med Nagasaki. 2008;53(2):37–41. doi:10.11343/amn.53.37.
  • Coral-Vázquez RM, Romero AJF, Canizales-Quinteros S, Coronel A, Valencia Villalvazo EY, Rivera JH, Regalado BR, Mejia DR, Canto P. Analysis of polymorphisms and haplotypes in genes associated with vascular tone, hypertension and oxidative stress in Mexican-Mestizo women with severe preeclampsia. Clin Biochem. 2013 May 1;46(7–8):627–32. doi:10.1016/j.clinbiochem.2012.12.016.
  • Also-Rallo E, Lopez-Quesada E, Urreizti R, Vilaseca MA, Lailla JM, Balcells S, Grinberg D. Polymorphisms of genes involved in homocysteine metabolism in preeclampsia and in uncomplicated pregnancies. Eur J Obstet Gynecol Reprod Biol. 2005 May 1;120(1):45–52. doi:10.1016/j.ejogrb.2004.08.008.
  • Abdelaziz NA, Alshishtawy FA, Abu Saif AH. Relationship between polymorphisms in thrombophilic genes and preeclampsia in Egyptian population. Egypt J Hosp Med. [Internet]. 2008 Oct 1;33(1):503–09. Available from: https://ejhm.journals.ekb.eg/article_17612.html
  • Dalmáz CA, Santos KG, Botton MR, Tedoldi CL, Roisenberg I. Relationship between polymorphisms in thrombophilic genes and preeclampsia in a Brazilian population. Blood Cells Mol Dis. 2006 Sep 1;37(2):107–10. doi:10.1016/j.bcmd.2006.07.005.
  • Vazquez-Alaniz F, Lumbreras-Márquez MI, Sandoval-Carrillo AA, Aguilar-Durán M, Méndez-Hernández EM, Barraza-Salas M, Castellanos-Juarez FX, Salas-Pacheco JM. Association of COMT G675A and MTHFR C677T polymorphisms with hypertensive disorders of pregnancy in Mexican mestizo population. Pregnancy Hypertens. 2014 Jan 1;4(1):59–64. doi:10.1016/j.preghy.2013.11.002.
  • Dávalos IP, Moran MC, Martínez-Abundis E, González-Ortiz M, Flores-Martínez SE, Machorro V, Sandoval L, Figuera LE, MenaJP, Olivia JM et al. Methylenetetrahydrofolate reductase C677T polymorphism and Factor V Leiden variant in Mexican women with preeclampsia/eclampsia. Blood Cells Mol Dis. 2005 Jul 1;35(1):66–69. doi:10.1016/j.bcmd.2005.03.008.
  • Zhou L, Cheng L, He Y, Gu Y, Wang Y, Wang C. Association of gene polymorphisms of FV, FII, MTHFR, SERPINE1, CTLA4, IL10, and TNFalpha with preeclampsia in Chinese women. Inflamm Res. [Internet]. 2016 Sep 1 [cited 2020 Jun 24];65(9):717–24. Available from: https://link.springer.com/article/10.1007/s00011-016-0953-y
  • Hou J, Lin L, Guo W, Luo D, Lan L. Association of methylenetetrahydrofolate reductase C677T polymorphism with the pre-eclampsia risk in Hakka pregnant women in Southern China. Gynecol Endocrinol. [Internet]. 2020 Apr 2 [cited 2020 Jun 24];36(4):322–26. Available from: https://www.tandfonline.com/doi/full/10.1080/09513590.2019.1658188
  • Klai S, Fekih-Mrissa N, El Housaini S, Kaabechi N, Nsiri B, Rachdi R, Gritili N. Association of MTHFR A1298C polymorphism (but not of MTHFR C677T) with elevated homocysteine levels and placental vasculopathies. Blood Coagul Fibrinolysis. [Internet] 2011 Jul [cited 2020 Jun 24];22(5):374–78. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001721-201107000-00004
  • Nurk E, Tell GS, Refsum H, Ueland PM, Vollset SE. Associations between maternal methylenetetrahydrofolate reductase polymorphisms and adverse outcomes of pregnancy: the Hordaland homocysteine study. Am J Med. 2004 Jul 1;117(1):26–31. doi:10.1016/j.amjmed.2004.01.019.
  • Stiefel P, Miranda ML, Bellido LM, Luna J, Jiménez L, Pamies E, de Frutos PG, Villar J. Genotype of the CYBA promoter −930A/G, polymorphism C677T of the MTHFR and APOE genotype in patients with hypertensive disorders of pregnancy: an observational study. Med Clin (Barc). 2009 Nov 7;133(17):657–61. doi:10.1016/j.medcli.2009.03.042.
  • Chedraui P, Salazar-Pousada D, Villao A, Escobar GS, Hidalgo L, Ramirez C, Spanderman ME, Kramer BW, Gavilanes AW. Polymorphisms of the methylenetetrahydrofolate reductase gene (C677T and A1298C) in nulliparous women complicated with preeclampsia. Gynecol Endocrinol. [Internet]. 2014 [cited 2020 Jun 24];30(5):392–96. Available from: https://www.tandfonline.com/doi/abs/10.3109/09513590.2014.895807
  • De Maat MPM, Jansen MWJC, Hille ETM, Vos HL, Bloemenkamp KWM, Buitendijk S, Helmerhorst FM, Wladimiroff JW, Bertina RM, De Groot CJ. Preeclampsia and its interaction with common variants in thrombophilia genes. J Thromb Haemost. [Internet]. 2004 Aug 26 [cited 2020 Jun 25];2(9):1588–93. Available from: http://doi.wiley.com/10.1111/j.1538-7836.2004.00861.x
  • Rigó Jr J, Rigo J, Nagy B, Fintor L, Tanyi J, Beke A, Karádi I, Papp Z. Maternal and neonatal outcome of preeclamptic pregnancies: the potential roles of factor V leiden mutation and 5,10 methylenetetrahydrofolate reductase. Hypertens Pregnancy. [Internet]. 2000 [cited 2020 Jun 24];19(2):163–72. Available from: https://www.tandfonline.com/doi/abs/10.1081/PRG-100100132
  • Prasmusinto D, Skrablin S, Hofstaetter C, Fimmers R, Vander Ven K. The methylenetetrahydrofolate reductase 677 C→T polymorphism and preeclampsia in two populations. Obstet Gynecol. 2002 Jun 1;99(6):1085–92. doi:10.1016/s0029-7844(02)01997-x.
  • Salomon O, Seligsohn U, Steinberg DM, Zalel Y, Lerner A, Rosenberg N, Pshithizki M, Oren M, Ravid B , Dvidson J. The common prothrombotic factors in nulliparous women do not compromise blood flow in the feto-maternal circulation and are not associated with preeclampsia or intrauterine growth restriction. Am J Obstet Gynecol. 2004 Dec 1;191(6):2002–09. doi:10.1016/j.ajog.2004.07.053.
  • Othman G, Elnaser A, Elbaz R, Ragab A. Thrombophilic genes mutations in preeclampsia. Bull Egypt Soc Physiol Sci. 2010;30(2):21–24.
  • Camilleri RS, Peebles D, Portmann C, Everington T, Cohen H. -455G/A β-fibrinogen gene polymorphism, factor V Leiden, prothrombin G20210A mutation and MTHFR C677T, and placental vascular complications. Blood Coagul Fibrinolysis [Internet]. 2004 Mar [cited 2020 Jun 24];15(2):139 Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001721-200403000-00005
  • Gerhardt A, Goecke TW, Beckmann MW, Wagner KJ, Tutschek B, Willers R, BENDER HG, Scharf RE, Zotz RB. The G20210A prothrombin-gene mutation and the plasminogen activator inhibitor (PAI-1) 5G/5G genotype are associated with early onset of severe preeclampsia. J Thromb Haemost. [Internet]. 2005 Mar 7 [cited 2020 Jun 24];3(4):686–91. Available from: http://doi.wiley.com/10.1111/j.1538-7836.2005.01226.x
  • Kim YJ, Williamson RA, Murray JC, Andrews J, Pietscher JJ, Peraud PJ, Merrill DC. Genetic susceptibility to preeclampsia: roles of cytosine-to-thymine substitution at nucleotide 677 of the gene for methylenetetrahydrofolate reductase, 68-base pair insertion at nucleotide 844 of the gene for cystathionine β-synthase, and factor V Leiden mutation. Am J Obstet Gynecol. 2001 May 1;184(6):1211–17. doi:10.1067/mob.2001.110411.
  • Kobashi G, Yamada H, Asano T, Nagano S, Hata A, Kishi R, Fujimoto S, Kondo K. Absence of association between a common mutation in the methylenetetrahydrofolate reductase gene and preeclampsia in Japanese women. Am J Med Genet. [Internet]. 2000 Jul 17 [cited 2020 Jun 24];93(2):122–25. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/1096-8628%2820000717%2993%3A2%3C122%3A%3AAID-AJMG8%3E3.0.CO%3B2-Z
  • Prasmusinto D, Skrablin S, Fimmers R, Van Der VK. Ethnic differences in the association of factor V Leiden mutation and the C677T methylenetetrahydrofolate reductase gene polymorphism with preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2004 Feb 10;112(2):162–69. doi:10.1016/S0301-2115(03)00314-2.
  • Kamineni V, Khan IA, Vattam KK, Poornima S, Hasan Q. Influence of thrombophilic genes; MTHFR (C677T), FVL (G1691A) and ACE (I28005D) In pregnant women with pre-eclampsia. Obstet Gynecol Int J. [Internet]. 2015 Feb 3 [cited 2020 Jun 24];2(1):14–20. Available from: https://medcraveonline.com/OGIJ/OGIJ-02-00023.php
  • Pegoraro RJ, Chikosi A, Rom L, Roberts C, Moodley J. Methylenetetrahydrofolate reductase gene polymorphisms in black South Africans and the association with preeclampsia. Acta Obstet Gynecol Scand. 2004 Jan;83(5):449–54. doi:10.1111/j.0001-6349.2004.0355.x.
  • Vefring H, Lie RT, Ødegåra R, Mansoor MA, Nilsen ST. Maternal and fetal variants of genetic thrombophilias and the risk of preeclampsia. Source Epidemiol. 2004;15(3):317–22. doi:10.1097/01.ede.0000112217.33111.23.
  • Chedraui P, Andrade ME, Salazar-Pousada D, Escobar GS, Hidalgo L, Ramirez C, Spaanderman ME, Kramer BW, Gavilanes AW. Polymorphisms of the methylenetetrahydrofolate reductase gene (C677T and A1298C) in the placenta of pregnancies complicated with preeclampsia. Gynecol Endocrinol. 2015 Jul 3;31(7):569–72. doi:10.3109/09513590.2015.1031104.
  • Osunkalu VO, Taiwo IA, Makwe CC, Quao RA. Methylene tetrahydrofolate reductase and methionine synthase gene polymorphisms as genetic determinants of pre-eclampsia. Pregnancy Hypertens. 2020 Apr 1;20:7–13. doi:10.1016/j.preghy.2020.02.001.
  • Lachmeijer AMA, Arngrímsson R, Bastiaans EJ, Pals G, Ten Kate LP, De Vries JIP, Kostense PJ, Aarnoudse JG, Dekker GA. Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia. Am J Obstet Gynecol. 2001 Feb 1;184(3):394–402. doi:10.1067/mob.2001.109393.
  • Powers RW, Dunbar MS, Gallaher MJ, Roberts JM. The 677 C-T methylenetetrahydrofolate reductase mutation does not predict increased maternal homocysteine during pregnancy. Obstet Gynecol. 2003 Apr 1;101(4):762–66. doi:10.1016/s0029-7844(02)03120-4.
  • Mislanova C, Martsenyuk O, Huppertz B, Obolenskaya M. Placental markers of folate-related metabolism in preeclampsia. Reproduction [Internet]. 2011 Sep [cited 2020 Jun 24];142(3):467–76. Available from: https://pubmed.ncbi.nlm.nih.gov/21690209
  • Üstüner I, Sönmezer M, Cengiz B, Karabulut HG, Elhan AHSF. Association of plasma homocysteine, serum folic acid and vitamin B12 Concentrations and MTHFR C677T polymorphism with preeclampsia | Üstüner | Gynecology obstetrics & reproductive medicine. Gynecol Obstet Reprod Med. 2006;12(3):159–64.
  • Wen SW, Chen XK, Rodger M, Rennicks White R, Yang Q, Smith GN, Sigal RJ, Perkins SL, Walker MC. Folic acid supplementation in early second trimester and the risk of preeclampsia. Am J Obstet Gynecol. 2008 Jan 1;198(1):45.e1–45.e7. doi:10.1016/j.ajog.2007.06.067.
  • Liu C, Liu C, Wang Q, Zhang Z. Supplementation of folic acid in pregnancy and the risk of preeclampsia and gestational hypertension: a meta-analysis. Arch Gynecol Obstet. 2018 Oct 1;298(4):697–704. doi:10.1007/s00404-018-4823-4.
  • Williams MA, Sanchez SE, Zhang C, Bazul V. Methylenetetrahydrofolate reductase 677 C→T polymorphism and plasma folate in relation to pre-eclampsia risk among Peruvian women. J Matern Neonatal Med. 2004 May;15(5):337–44. doi:10.1080/14767050410001680037.
  • Hernández-Díaz S, Wu XF, Hayes C, Werler MM, Ashok TD, Badovianc R, Kelsey KT, Mitchell AA. Methylenetetrahydrofolate reductase polymorphisms and the risk of gestational hypertension. Epidemiology. 2005;16(5):628–34. doi:10.1097/01.ede.0000172132.13513.e0.
  • Kahn SR, Platt R, McNamara H, Rozen R, Chen MF, Genest J, Goulet L, Lydon J, Seguin L, Dassa C. Inherited thrombophilia and preeclampsia within a multicenter cohort: the montreal preeclampsia study. Am J Obstet Gynecol. 2009 Feb 1;200(2):151.e1–151.e9. doi:10.1016/j.ajog.2008.09.023.
  • Rajkovic A, Mahomed K, Rozen R, Malinow MR, King IB, Williams MA. Methylenetetrahydrofolate reductase 677 C → T polymorphism, plasma folate, vitamin B12 concentrations, and risk of preeclampsia among black African women from Zimbabwe. Mol Genet Metab. 2000 Jan 1;69(1):33–39. doi:10.1006/mgme.1999.2952.
  • Zhang Z-Q, Hu S-H, Zhu C-H, Yang C-M. Correlation between methylenetetrahydrofolate reductase gene C677T polymorphism and preeclampsia in pregnant women. J Hainan Med Univ. [Internet]. 2017 [cited 2020 Jun 24]; 23. Available from: http://www.hnykdxxb.com
  • Ibrahim ZM, Metawie MAE, El-Baz AM, El-Bahie MA. Methylenetetrahydrofolate C677T polymorphism and pre-eclamptic Egyptian women. Middle East Fertil Soc J. 2012 Jun 1;17(2):105–10. doi:10.1016/j.mefs.2011.09.005.
  • Al-Khafaji SM, Al-janabi AM, Faris SA. Genetic aspect of Iraqi pregnant women with pre-eclampsia. Int J Sci Res. 2013;4(9):2319–7064.
  • Murakami S, Matsubara N, Saitoh M, Miyakawa S, Shoji M, Kubo T. The relation between plasma homocysteine concentration and methylenetetrahydrofolate reductase gene polymorphism in pregnant women. J Obstet Gynaecol Res. 2001 Dec 1;27(6):349–52. doi:10.1111/j.1447-0756.2001.tb01284.x.
  • Ahmed SF, Ali MM, Kheiri S, Elzaki SEG, Adam I. Association of methylenetetrahydrofolate reductase C677T and reduced-f carrier-1 G80A gene polymorphism with preeclampsia in Sudanese women. Hypertens Pregnancy. 2020 Apr 2;39(2):77–81. doi:10.1080/10641955.2020.1725037.
  • Livrinova V, Hadzi Lega M, Hristova Dimcheva A, Samardziski I, Isjanovska R. Factor V leiden, Prothrombin and MTHFR mutation in patients with preeclampsia, intrauterine growth restriction and placental abruption. Open Access Maced J Med Sci. 2015 Dec 15;3(4):590–94. doi:10.3889/oamjms.2015.099.
  • Azimi-Nezhad M, Teymoori A, Salmaninejad A, Ebrahimzadeh-Vesal R. Association of MTHFR C677T Polymorphism with preeclampsia in North East of Iran (Khorasan Province). Fetal Pediatr Pathol. 2020;39(5):373-80. doi:10.1080/15513815.2019.1655819.
  • Rahimi Z, Malek-Khosravi S, Rahimi Z, Jalilvand F, Parsian A. MTHFR C677T and eNOS G894T variants in preeclamptic women: contribution to lipid peroxidation and oxidative stress. Clin Biochem. 2013 Jan 1;46(1–2):143–47. doi:10.1016/j.clinbiochem.2012.10.020.
  • Sazegar H, Farsani FM, Sadat Sonbolestan E, Sazgar H, Zia-Jahromi N. Investigation the association between MTHFR gene polymorphism and homocysteine in Iranian pregnant women. Artic Asian J Pharm Clin Res. 2017;10(12):411-4.doi:10.22159/ajpcr.2017.v10i12.21579.
  • Salimi S, Saravani M, Yaghmaei M, Fazlali Z, Mokhtari M, Naghavi A, Faranjian-Mashhadi F. The early-onset preeclampsia is associated with MTHFR and FVL polymorphisms. Arch Gynecol Obstet. 2015 Jun 1;291(6):1303–12. doi:10.1007/s00404-014-3561-5.
  • Reshetnikov EA, Kulikovskii VF, Batlutskaia IV, Iakunchenko TI, Polonikov AV, Churnosov MI. Candidate genes and clinical-laboratory indices in pregnant women depending on the development of preeclampsia. HELIX- Sci Explor. 2017;8(1):3012–15. doi:10.29042/2018-3012-3015.
  • Kosmas IP, Tatsioni A, Ioannidis JPA. Association of C677T polymorphism in the methylenetetrahydrofolate reductase gene with hypertension in pregnancy and pre-eclampsia: a meta-analysis. J Hypertens. 2004;22(9):1655–62. doi:10.1097/00004872-200409000-00004.
  • Xia XP, Chang WW, Cao YX. Meta-analysis of the methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to pre-eclampsia. Hypertension research. 2012;35(12):1129-34. https://www.nature.com/articles/hr2012117
  • Zhang G, Zhao J, Yi J, Luan Y, Wang Q. Association between gene polymorphisms on chromosome 1 and susceptibility to pre-Eclampsia: an updated meta-analysis. Med Sci Monit. 2016 Jun 27;22:2202–14. doi:10.12659/MSM.896552.
  • Wang XM, Wu HY, Qiu XJ. Methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and risk of preeclampsia: an updated meta-analysis based on 51 studies. Arch Med Res. 2013 Apr 1;44(3):159–68. doi:10.1016/j.arcmed.2013.01.011.
  • Wu X, Yang K, Tang X, Sa Y, Zhou R, Liu J, LuoY, Tang W. Folate metabolism gene polymorphisms MTHFR C677T and A1298C and risk for preeclampsia: a meta-analysis. J Assist Reprod Genet. 2015 May 1;32(5):797–805. doi:10.1007/s10815-014-0408-8.
  • Li Y, Wang K, Duan T. Plasma total homocysteine and risk of hypertension in pregnancy: a Mendelian randomization study. Int J Clin Exp Med. 2019;12(6):6561–69.
  • Khidri FF, Waryah YM, Ali FK, Shaikh H, Ujjan ID, Waryah AM. MTHFR and F5 genetic variations have association with preeclampsia in Pakistani patients: a case control study. BMC Med Genet. 2019 Oct 23;20(1):1–12. doi:10.1186/s12881-019-0905-9.
  • Many A, Schreiber L, Rosner S, Lessing JB, Eldor A, Kupferminc MJ. Pathologic features of the placenta in women with severe pregnancy complications and thrombophilia. Obstet Gynecol. 2001 Dec 1;98(6):1041–44. doi:10.1016/s0029-7844(01)01621-0.
  • Thomsen LCV, McCarthy NS, Melton PE, Cadby G, Austgulen R, Nygard OK, Johnson MP, Brennecke S, Moses EK, Bjørge L. The antihypertensive MTHFR gene polymorphism rs17367504-G is a possible novel protective locus for preeclampsia. J Hypertens. 2017;35(1):132–39. doi:10.1097/HJH.0000000000001131.
  • Canto P, Canto-Cetina T, Juárez-Velázquez R, Rosas-Vargas H, Rangel-Villalobos H, Canizalez-Quinteros S, Velázquez-Wong AC, Villarreal-Molina MT, Fernández G, Coral-Vázquez R. Methylenetetrahydrofolate reductase (C677T and glutathione S-transferase P1 A313G are associated with a reduced risk of preeclampsia in Maya-Mestizo women. Hypertens Res. [Internet] 2008 May [cited 2020 Jun 24];31(5):1015–19. Available from: https://www.nature.com/articles/hr2008128
  • Aggarwal S, Dimri N, Tandon I, Agarwal S. Preeclampsia in North Indian women: the contribution of genetic polymorphisms. J Obstet Gynaecol Res. 2011 Oct 1;37(10):1335–41. doi:10.1111/j.1447-0756.2010.01523.x.
  • Said JM, Higgins JR, Moses EK, Walker SP, Borg AJ, Monagle PT, Brennecke SP. Inherited thrombophilia polymorphisms and pregnancy outcomes in nulliparous women. Obstet Gynecol. 2010 Jan;115(1):5–13. doi:10.1097/AOG.0b013e3181c68907.
  • Zusterzeel PLM, Visser W, Bolm HJ, Peters WHM, Heil SG, Steegers EAP, Steegers EA. Methylenetetrahydrofolate reductase polymorphisms in preeclampsia and the HELLP syndrome. Hypertens Pregnancy. 2000 Jan 3;19(3):299–307. doi:10.1081/PRG-100101991.
  • Van Der Put NMJ, Gabreëls F, Stevens EMB, Smeitink JAM, Trijbels FJM, Eskes TKAB, Vanden Heuvel LP, Blom HJ. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998 May 1;62(5):1044–51. doi:10.1086/301825.
  • McKay JA, Groom A, Potter C, Coneyworth LJ, Ford D, Mathers JC, Relton CL. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B 12. PLoS One. 2012 Mar 30;7(3):e33290. doi:10.1371/journal.pone.0033290.
  • Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: a review of animal and human literature.Molecular genetics and metabolism. 2014;113(4):243-52. doi:10.1016/j.ymgme.2014.10.006.
  • Bönsch D, Hothorn T, Krieglstein C, Koch M, Nehmer C, Lenz B, Reulbach U, Kornhuber J, Bleich S. Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int. 2007 Mar;24(2):315–26. doi:10.1080/07420520701290565.
  • Mohammadpour-Gharehbagh A, Teimoori B, Narooei-nejad M, Mehrabani M, Saravani R, Salimi S. The association of the placental MTHFR 3′-UTR polymorphisms, promoter methylation, and MTHFR expression with preeclampsia. J Cell Biochem. 2018 Feb 1;119(2):1346–54. doi:10.1002/jcb.26290.
  • Del GGF, Price EM, Hanna CW, Robinson WP. No evidence for association of MTHFR 677C>T and 1298A>C variants with placental DNA methylation. Clin Epigenetics. 2018;10(1):34. doi:10.1186/s13148-018-0468-1.
  • Garrow TA. Purification, kinetic properties, and cDNA cloning of mammalian betaine- homocysteine methyltransferase. J Biol Chem. 1996 Sep 13;271(37):22831–38. doi:10.1074/jbc.271.37.22831.
  • Shin J, Kim Y, Park H, Kim H, Lee H. Localization of folate metabolic enzymes, methionine synthase and 5,10-methylenetetrahydrofolate reductase in human placenta. Gynecol Obstet Invest. 2014 Apr 18;78(4):259–65. doi:10.1159/000364866.
  • Chen LH, Liu M-L, Hwang H-Y, Chen L-S, Korenberg J, Shane B. Human methionine synthase. cDNA cloning, gene localization, and expression. J Biol Chem. [Internet]. 1997 [cited 2020 Jun 24];272(6):3628–34. Available from: https://www.jbc.org/content/272/6/3628.long
  • Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum Mol Genet. [Internet]. 1996 [cited 2020 Jun 24];5(12):1867–74. Available from: https://academic.oup.com/hmg/article/5/12/1867/656408
  • Van De R Put NMJ, Van Der Molen EF, Kluijtmans LAJ, Heil SG, Trijbels JMF, Eskes TK, Van Oppenraaij-Emmerzaal D, Banjerjee R, Blom HJ. Sequence analysis of the coding region of human methionine synthase: relevance to hyperhomocysteinaemia in neural-tube defects and vascular disease. Q J Med. 1997;90(8):511-7.doi:10.1093/qjmed/90.8.511.
  • Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3059–64. doi:10.1073/pnas.95.6.3059.
  • Gaughan DJ, Kluijtmans LAJ, Barbaux S, McMaster D, Young IS, Yarnell JWG, Evans A, Whitehead AS. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001 Aug 1;157(2):451–56. doi:10.1016/S0021-9150(00)00739-5.
  • Seremak-Mrozikiewicz A, Bogacz A, Bartkowiak-Wieczorek J, Wolski H, Czerny B, Gorska-Paukszta M, Drews K. The importance of MTHFR, MTR, MTRR and CSE expression levels in Caucasian women with preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2015 May 1;188:113–17. doi:10.1016/j.ejogrb.2015.03.009.
  • Khot V, Kale A, Joshi A, Chavan-Gautam P, Joshi S. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (Folic Acid, Vitamin B12) and omega-3 fatty acids. BioMed Res Int. 2014;2014:1–10. doi:10.1155/2014/613078.
  • Ho V, Massey TE, King WD. Effects of methionine synthase and methylenetetrahydrofolate reductase gene polymorphisms on markers of one-carbon metabolism. Genes Nutr. 2013;8(6):571–80. doi:10.1007/s12263-013-0358-2.
  • Laraqui A, Allami A, Carrié A, Coiffard AS, Benkouka F, Benjouad A, Bendriss A, Kadiri N, Bennouar N, Benomar A et al. Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol. 2006 Feb 1;61(1):51–61. doi:10.2143/AC.61.1.2005140.
  • Furness DLF, Fenech MF, Khong YT, Romero R, Dekker GA. One-carbon metabolism enzyme polymorphisms and uteroplacental insufficiency. Am J Obstet Gynecol. 2008 Sep;199(3):276.e1–276.e8. doi:10.1016/j.ajog.2008.06.020.
  • Seremak-Mrozikiewicz A, Bogacz A, Deka-Pawlik D, Klejewski A, Wolski H, Drews K, Karasiewicz M, Czerny B. The polymorphisms of methionine synthase (MTR) and methionine synthase reductase (MTRR) genes in pathogenesis of preeclampsia. J Matern Neonatal Med. 2017 Oct 18;30(20):2498–504. doi:10.1080/14767058.2016.1254183.
  • Barbosa PR, Stabler SP, Machado ALK, Braga RC, Hirata RDC, Hirata MH, Sampaio-Neto LF, Allen RH, Guerra-Shinohara EM. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur J Clin Nutr. 2008 May 23;62(8):1010–21. doi:10.1038/sj.ejcn.1602810.
  • Vaughn JD, Bailey LB, Shelnutt KP, Von-castel Dunwoody KM, Maneval DR, Davis SR, Quinlivan EP, Gregory III JF, Theriaque DW, Kauwell GP. Methionine synthase reductase 66A→ G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C→ T variant. J Nutr. 2004;134(11):2985–90. doi:10.1093/jn/134.11.2985.
  • Reshetnikov EA, Sorokina IN, Batlutskaya IV, Krikun EN, Pahomov SP, Evdokimov VI. Polymorphisms of genes and the risk of preeclampsia. Indo Am J P Sci. 2018; 5(7):6975-6978. doi:10.5281/zenodo.1324376.
  • Furness DLF, Thompson SD, Dekker GA, Roberts CT. Preeclampsia and small for gestational age babies are associated with defects in the folate-mediated homocysteine metabolic pathway. Reprod Fertil Dev. 2010;22(9):114. doi:10.1071/SRB10Abs314.
  • Furness DLF, Dekker GA, McCormack CD, Nowak RC, Thompson SD, Roberts CT. The association of folate pathway enzyme polymorphisms and pregnancy outcome. Reprod Fertil Dev. 2009;21(9):121. doi:10.1071/SRB09Abs522.
  • Khot VV, Yadav DK, Shrestha S, Kaur L, Sundrani DP, Chavan-Gautam PM, Mehendale SS, Chandak GR, Joshi SR. Hypermethylated CpG sites in the MTR gene promoter in preterm placenta. Epigenomics. 2017 Jul 1;9(7):985–96. doi:10.2217/epi-2016-0173.
  • Li X, Jiang J, Xu M, Xu M, Yang Y, Lu W, Yu X, Ma J, Pann J. Individualized supplementation of folic acid according to polymorphisms of Methylenetetrahydrofolate Reductase (MTHFR), Methionine Synthase Reductase (MTRR) reduced pregnant complications. Gynecol Obstet Invest. 2015 Jan 23;79(2):107–12. doi:10.1159/000367656.
  • Quéré I, Paul V, Rouillac C, Janbon C, London J, Demaille J, Kamoun P, Dufier JL, Abitbol M, Chassé JF. Spatial and temporal expression of the cystathionine β-synthase gene during early human development. Biochem Biophys Res Commun. 1999 Jan 8;254(1):127–37. doi:10.1006/bbrc.1998.9079.
  • Wang R. Two’s company, three’s a crowd: can H 2 S be the third endogenous gaseous transmitter? FASEB J. 2002 Nov;16(13):1792–98. doi:10.1096/fj.02-0211hyp.
  • Nazki FH, Sameer AS, Ganaie BA. Folate: metabolism, genes, polymorphisms and the associated diseases. In: Gene. 2014;533(1):11-20.doi:10.1016/j.gene.2013.09.063.
  • Hu T, Wang G, Zhu Z, Huang Y, Gu H, Ni X. Increased ADAM10 expression in preeclamptic placentas is associated with decreased expression of hydrogen sulfide production enzymes. Placenta. 2015 Aug 1;36(8):947–50. doi:10.1016/j.placenta.2015.05.007.
  • Holwerda KM, Bos EM, Rajakumar A, Ris-Stalpers C, Van Pampus MG, Timmer A, Erwich JJ, Faas MM, Van Goor H, Lely AT. Hydrogen sulfide producing enzymes in pregnancy and preeclampsia. Placenta. 2012 Jun 1;33(6):518–21. doi:10.1016/j.placenta.2012.02.014.
  • Ibrahim S, Maqbool S, Azam M, Iqbal MP, Qamar R. CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children. Mol Biol Rep. 2018 Jun 1;45(3):353–60. doi:10.1007/s11033-018-4169-9.
  • De León Bautista MP, Romero-Valdovinos M, Zavaleta-Villa B, Martínez-Flores A, Olivo-Díaz A. Association of cystathionine β-synthase gene polymorphisms with preeclampsia. Clin Appl Thromb. [Internet]. 2018 Dec 1 [cited 2020 Jun 25];24(9_suppl):285S–293S. Available from: https://europepmc.org/articles/PMC6714820. doi:10.1177/1076029618808913.
  • Meier M, Janosik M, Kery V, JK-TE, 2001 U. Structure of human cystathionine β-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. embopress.org. 2001;20(15):3910–16. doi:10.1093/emboj/20.15.3910.
  • Holwerda KM, Weedon-Fekjær MS, Staff AC, Nolte IM, Van Goor H, Lely AT, Faas MM. The association of single nucleotide polymorphisms of the maternal cystathionine-β-synthase gene with early-onset preeclampsia. Pregnancy Hypertens. 2016 Jan 1;6(1):60–65. doi:10.1016/j.preghy.2015.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.