Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
3,210
Views
10
CrossRef citations to date
0
Altmetric
Review

Laser-cladding of high entropy alloy coatings: an overview

, , , , , , , , , , & show all
Article: 2151696 | Received 04 Nov 2022, Accepted 20 Nov 2022, Published online: 26 Nov 2022

References

  • Ye YF, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2016;19(6):349–14.
  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218.
  • Kaushik N, Meena A, Mali HS. High entropy alloy synthesis, characterisation, manufacturing & potential applications: a review. Mater Manuf Processes. 2022;37(10):1085–1109.
  • Lim WYS, Cao J, Suwardi A, et al. Recent advances in laser-cladding of metal alloys for protective coating and additive manufacturing. J Adhesi Sci Technol. 2022;1–23. 10.1080/01694243.2022.2085499
  • Huang Y, Hu Y, Zhang M, et al. Multi-objective optimization of process parameters in laser cladding CoCrCuFeNi high-entropy alloy coating. J Therm Spray Technol. 2022;31(6):1985–2000.
  • Liu H, Tan CKI, Cheng WS, et al. Effects of robotic hammer peening on structural properties of ni-based single-crystal superalloy: dislocation slip traces and crystallographic reorientations. Metall Mater Trans A. 2020;51(6):3180–3193.
  • Liu H, Ivan Tan CK, Wei Y, et al. Robotic hammer peening-induced martensite in austenitic steels: spatial distributions of plastic deformation and phase transformation. Procedia CIRP. 2020;87:297–301.
  • Liu H, Meng TL, Cao J, et al. Comparisons on localized surface modifications of stainless steels induced by laser shock peening and robotic hammer peening. Procedia CIRP. 2022;108:118–122.
  • Liu H, Meng TL, Cao J et al Advanced surface engineering and protective coating Wei, Yuefan, Shng, Shuyun. Lecture Notes in Mechanical Engineering. Singapore: Springer Singapore; 2022. p. 138–141. doi:10.1007/978-981-16-5763-4_30.
  • Liu H, Tan CKI, Dong X , et al. Laser-cladding and robotic hammer peening of stainless steel 431 on low alloy steel 4140 for surface enhancement and corrosion protections. J Adhesi Sci Technol. 2022;36(21):2313–2327.
  • Liu H, Tan CKI, Wei Y, et al. Laser-cladding and interface evolutions of inconel 625 alloy on low alloy steel substrate upon heat and chemical treatments. Surf Coat Technol. 2020;404:126607.
  • Liu H, Tan CKI, Meng TL, et al. Hot corrosion and internal spallation of laser-cladded inconel 625 superalloy coatings in molten sulfate salts. Corros Sci. 2021;193:109869.
  • Sova A, Doubenskaia M, Trofimov E, et al. Deposition of high-entropy alloy coating by cold spray combined with laser melting: feasibility tests. J Therm Spray Technol. 2022;31(4):1112–1128.
  • Liu H, Tan CKI, Meng TL, et al. Direct deposition of low-cost carbon fiber reinforced stainless steel composites by twin-wire arc spray. J Mater Process Technol. 2022;301:117440.
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2–3):233–238.
  • Ye YF, Wang Q, Lu J, et al. The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics. 2015;59:75–80.
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia. 2013;61(13):4887–4897.
  • Yeh J-W. Alloy design strategies and future trends in high-entropy alloys. JOM. 2013;65(12):1759–1771.
  • Senkov ON, Senkova SV, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis. Acta Materialia. 2013;61(5):1545–1557.
  • Stepanov ND, Shaysultanov DG, Salishchev GA, et al. Structure and mechanical properties of a light-weight alnbtiv high entropy alloy. Mater Lett. 2015;142:153–155.
  • Youssef KM, Zaddach AJ, Niu C, et al. A Novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. MaterRes Lett. 2015;3(2):95–99
  • Yurchenko N, Panina E, Zherebtsov S, et al. Oxidation behaviour of eutectic refractory high-entropy alloys at 800–1000 °C. Corros Sci. 2022;205:110464.
  • Wang M, Ma ZL, Xu ZQ, et al. Designing Vxnbmota refractory high-entropy alloys with improved properties for high-temperature applications. Scr Mater. 2021;191:131–136.
  • Moschetti M, Burr PA, Obbard E, et al. Design considerations for high entropy alloys in advanced nuclear applications. J Nucl Mater. 2022;567:153814.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158.
  • Seol JB, Bae JW, Kim JG, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Materialia. 2020;194:366–377.
  • Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater. 2018;61(1):2–22.
  • Chao Q, Guo T, Jarvis T, et al. Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel. Surf Coat Technol. 2017;332:440–451.
  • Zhang Y, Han T, Xiao M, et al. Tribological behavior of diamond reinforced FeNiCoCrTi0.5 carbonized high-entropy alloy coating. Surf Coat Technol. 2020;401:126233.
  • Juan YF, Li J, Jiang YQ, et al. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings. Appl Surf Sci. 2019;465:700–714.
  • Chang F, Cai B, Zhang C, et al. Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding. Surf Coat Technol. 2019;359:132–140.
  • Cui Y, Shen J, Manladan SM, et al. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl Surf Sci. 2020;512:145736.
  • Gu Z, Mao P, Gou Y, et al. Microstructure and properties of MgMoNbFeTi2Yx high entropy alloy coatings by laser cladding. Surf Coat Technol. 2020;402:126303.
  • Sun Z, Zhang M, Wang G, et al. Wear and corrosion resistance analysis of FeCoNiTiAlx high-entropy alloy coatings prepared by laser cladding. Coatings. 2021;11(2):155.
  • Cheng J, Sun B, Ge Y, et al. Effect of B/Si Ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(BxSi1-X)25 coating prepared by laser cladding. Surf Coat Technol. 2020;402:126320.
  • Liu J, Liu H, Chen P, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding. Surf Coat Technol. 2019;361:63–74.
  • Wang H, Liu Q, Guo Y, et al. MoFe1.5CrTiWAlNbx refractory high-entropy alloy coating fabricated by laser cladding. Intermetallics. 2019;115:106613.
  • Zhang S, Wu CL, Yi JZ, et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying. Surf Coat Technol. 2015;262:64–69.
  • Wu CL, Zhang S, Zhang CH, et al. Phase evolution characteristics and corrosion behavior of FeCoCrAlCu-X0.5 coatings on Cp Cu by laser high-entropy alloying. Opt Laser Technol. 2017;94:68–71.
  • Shi Y, Ni C, Liu J, et al. Microstructure and properties of laser clad high-entropy alloy coating on aluminium. Mater Sci Technol. 2018;34(10):1239–1245.
  • Shon Y, Joshi SS, Katakam S, et al. Laser additive synthesis of high entropy alloy coating on aluminum: corrosion behavior. Mater Lett. 2015;142:122–125.
  • Yue TM, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J Alloys Compd. 2014;587:588–593.
  • Meng GH, Protasova NA, Kruglov EP, et al. Solidification behavior and morphological evolution in laser surface forming of AlCoCrCuFeNi multi-layer high-entropy alloy coatings on Az91d. J Alloys Compd. 2019;772:994–1002.
  • Katakam S, Joshi SS, Mridha S, et al. Laser assisted high entropy alloy coating on aluminum: microstructural evolution. J Appl Phys. 2014;116(10):104906.
  • Vyas A, Menghani J, Natu H. Influence of Wc particle on the metallurgical, mechanical, and corrosion behavior of AlFeCuCrCoNi-WCx high-entropy alloy coatings. J Mater Eng Perform. 2021;30(4):2449–2461.
  • Jiang PF, Zhang CH, Zhang S, et al. Fabrication and wear behavior of tic reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying. Mater Chem Phys. 2020;255:123571.
  • Liu J, Guan Y, Xia X, et al. Laser cladding of Al0.5CoCrCuFeNiSi high entropy alloy coating without and with yttria addition on H13 steel. Crystals. 2020;10(4):320.
  • Jiang J, Li R, Yuan T, et al. Microstructural evolution and wear performance of the high-entropy FeMnCoCr Alloy/TiC/CaF2 Self-lubricating composite coatings on copper prepared by laser cladding for continuous casting mold. J Mater Res. 2019;34(10):1714–1725.
  • Guo Y, Li C, Zeng M, et al. In-Situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding. Mater Chem Phys. 2020;242:122522.
  • Huang C, Zhang Y, Vilar R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater Des. 2012;41:338–343.
  • Zhang HX, Dai JJ, Sun CX, et al. Microstructure and wear resistance of TiAlNiSiV high-entropy laser cladding coating on Ti-6Al-4V. J Mater Process Technol. 2020;282:116671.
  • Zhong M, Liu W. Laser surface cladding: the state of the art and challenges. Proc Inst Mech Eng C J Mech Eng Sci. 2010;224(5):1041–1060
  • Shi T, Shi J, Xia Z, et al. Precise control of variable-height laser metal deposition using a height memory strategy. J Manuf Process. 2020:57, 222–32.
  • Ostovari Moghaddam A, Samodurova MN, Pashkeev K, et al. Evgeny A.Trofimov, A novel intermediate temperature self-lubricating CoCrCu1-xFeNix high entropy alloy fabricated by direct laser cladding. Tribol Int. 2021;156:106857.
  • Alaneme KK, Bodunrin MO, Oke SR. Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review. J Mater Res Technol. 2016;5(4):384–393.
  • Ullah Arif Z, Yasir Khalid M, Ur Rehman E, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications. J Manuf Processes. 2021;68:225–273.
  • Zhao J, Ma A, Ji X, et al. Slurry erosion behavior of AlxCoCrFeNiTi0.5 high-entropy alloy coatings fabricated by laser cladding. Metals. 2018;8(2):126–132.
  • Cui W, Li W, Chen W-T, et al. Laser metal deposition of an AlCoCrFeNiTi0.5 high-entropy alloy coating on a Ti6Al4V substrate: microstructure and oxidation behavior. Crystals. 2020;10(8):638–645.
  • Ghadami F, Aghdam A, Rouh S, et al. Microstructural characteristics and oxidation behavior of the modified MCrAlX coatings: a critical review. Vacuum. 2021;185:109980.
  • Chen H, Fan M, Zhu W, et al. High temperature oxidation behaviour of combustion flame sprayed CoNiCrAlY coatings. Surf Coat Technol. 2020;385:125431.
  • Ghadami F, Aghdam A, Ghadami S. A comprehensive study on the microstructure evolution and oxidation resistance of conventional and nanocrystalline MCrAlY coatings. Sci Rep. 2021;11(1):1–21.
  • Q-L X, Zhang Y, Liu S-H, et al. High-temperature oxidation behavior of CuAlNiCrFe high-entropy alloy bond coats deposited using high-speed laser cladding process. Surf Coat Technol. 2020;398, 126093.
  • Liu X, Wang T, Li C, et al. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings. Prog Nat Sci Mater Int. 2016;26(1):103–111.
  • Saremi M, Afrasiabi A, Kobayashi A. Microstructural analysis of YSZ and YSZ/ Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf Coat Technol. 2008;202(14):3233–3238.
  • Kunce I, Pola´nski M, Czujko T. Microstructures and hydrogen storage properties of LaNiFeVMn alloys. Int J Hydrogen Energy. 2017;42(44):27154–27164.