Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
760
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fatigue behavior and fracture characteristics of 718Plus nickel-based superalloy at high temperature

, , &
Article: 2174797 | Received 25 Jan 2023, Accepted 27 Jan 2023, Published online: 06 Feb 2023

References

  • Hu D, Yang Q, Liu H, et al. Crack closure effect and crack growth behavior in GH2036 superalloy plates under combined high and low cycle fatigue. Int J Fatigue. 2017;95:90–10.
  • Jiang S, Zhang Y, Zhu X, et al. Physical mechanisms of nanocrystallization of a novel Ni-based alloy under uniaxial compression at cryogenic temperature. Mater Charact. 2016;116:18–23.
  • Holländer D, Henkel D, Kulawinski D, et al. Investigation of isothermal and thermo-mechanical fatigue behavior of the nickel-base superalloy IN738LC using standardized and advanced test methods. Material Sci Engineer. 2016;670:314–324.
  • Lin Y.C., Li, Ling, He, Daoguang, Chen, Mingsong, Liu, Guoqiang, et al. Effects of pre-treatments on mechanical properties and fracture mechanism of a nickel-based superalloy. Mat Sci Eng. 2017;679. doi:10.1016/j.msea.2016.10.058 .
  • Zhang X, Wang X-C, Li H-C, et al. Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of delta phase. Mater Sci Eng. 2017;682:12–22.
  • Wang M, Du J, Deng Q. The Influence of Oxygen Partial Pressure on the Crack Propagation of Superalloy under Fatigue-Creep-Environment Interaction. Mat Sci Eng. 2021;31:140903.
  • Gustafsson D, Lundstroem E. High temperature fatigue crack growth behaviour of Inconel 718 under hold time and overload conditions. Int J Fatigue. 2013;52:157.
  • Kunz L, Lukas P, Konecna R. High-cycle fatigue of Ni-base superalloy Inconel 713LC. Int J Fatigue. 2010;32:908–913.
  • Shen Y, Zhang -C-C, Zhang P-Y, et al. Fatigue life prediction of nickel-based GH4169 alloy on the basis of a multi-scale crack propagation approach. Eng Fract Mech. 2018;199:29–40.
  • Mikkelsen O, Siriwardane SC, Mikkelsen O, et al. A new nonlinear fatigue damage model based only on S-N curve parameters. Int J Fatigue. 2017;103:327.
  • Yan C. Multiaxial fatigue behavior of Ni-based superalloy GH4169 at 650 °C. Mat Sci Eng. 2006;432:312–338.
  • Liu J, Zhang Z, Li B, Lang S, et al. Multiaxial Fatigue Life Prediction of GH4169 Alloy Based on the Critical Plane Method. Metals - Open Access Metallurgy J. 2019;9(2):255.
  • Wang M, et al. A Review on 718Plus, the New Superalloy: performance, Aerospace Application and Development Trend. Rapid Prototyp J. 2017;28:1509.
  • Hosseini SA, Abbasi SM, Madar KZ, et al. The Effect of Boron and Zirconium on Wrought Structure and γ-γ′ Lattice Misfit characterization in Nickel-Based Superalloy ATI 718Plus. Mater Chem Phys. 2018;211:302–311.
  • Zhang L, Wu XR, Huang XY, et al. Fractographical Investigation on High-Cycle Fatigue Behavior of Direct Aging GH4169 Superalloy. Mater Sci Forum. 2014;789:627–632.
  • Viskari L, Cao Y, Norell M, et al. Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy. Mater Sci Eng. 2011;528(6):2570–2580.
  • Wang JG, Wang H, Kang Y, et al. Multiaxial Fatigue Fracture Analysis of GH4169 Suppalloy at High Temperature. Res Explorat Lab. 2007;26:183
  • Misra RDK, Challa VSA, Injeti VSY. Phase reversion-induced nanostructured austenitic alloys: an overview. Mater Technol. 2022;37(7):437–449.
  • Alabbad B, Tin S. Effect of grain boundary misorientation on η phase precipitation in Ni-base superalloy 718Plus. Mater Charact. 2019;151:53–63.