Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
667
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Features of electrochemical behavior of graphene films on metal foams

, , , , , , , , & show all
Article: 2211374 | Received 20 Jan 2016, Accepted 02 May 2023, Published online: 24 May 2023

References

  • Xia H, Yan F, Lai MO, et al. Electrochemical properties of BiFeO3 thin films prepared by pulsed laser deposition. Funct Mater Lett. 2009;02(04):163–6.
  • Xia H, Xiao W, Lai MO, et al. Improved capacitive behavior of MnO2 thin films prepared by electrodeposition on the PT substrate with MnOx buffer layer. Funct Mater Lett. 2009;2(01):13–18.
  • Yuan W, Zhou Y, Li Y, et al. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep. 2013;3(1):2248–2257.
  • Gan L, Zhang D, Guo X. Electrochemistry: an efficient way to chemically modify individual monolayers of graphene. Small. 2012;8(9):1326–1330.
  • Gueell AG, Ebejer N, Snowden ME, et al. Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes. J Am Chem Soc. 2012;134(17):7258–7261.
  • Li W, Tan C, Lowe MA, et al. Electrochemistry of individual monolayer graphene sheets. ACS Nano. 2011;5(3):2264–2270.
  • Valota AT, Kinloch IA, Novoselov KS, et al. Electrochemical behavior of monolayer and bilayer graphene. ACS Nano. 2011;5(11):8809–8815.
  • Wu S, He Q, Tan C, et al. Graphene-based electrochemical sensors. Small. 2013;9(8):1160–1172.
  • Banks CE, Davies TJ, Wildgoose GG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Compton Chem Comm. 2005;7(7):829–841.
  • Brownson DAC, Munro LJ, Kampouris DK, et al. Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv. 2011;1(6):978–988.
  • Soin N, Roy SS, Lim TH, et al. Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation. Mater Chem and Phys. 2011;129(3):1051–1057.
  • Patel AN, Collignon MG, O’Connell MA, et al. A new view of electrochemistry at highly oriented pyrolytic graphite. J Am Chem Soc. 2012;134(49):20117–20130.
  • Patel AN, McKelvey K, Unwin PR. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces. J Am Chem Soc. 2012;134(50):20246–20249.
  • Gueell AG, Ebejer N, Snowden ME, et al. Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes. J Am Chem Soc. 2012;134(17):7258–7261.
  • Wang L, Ambrosi A, Pumera M. Could carbonaceous impurities in reduced graphenes be responsible for some of their extraordinary electrocatalytic activities? J Chemistry-Asian. 2013;8(6):1200–1204.
  • Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Mater. 2011;10(6):424–428.
  • Lee JS, Ahn HJ, Yoon JC, et al. Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Phys Chem Chem Phys. 2012;14(22):7938–7943.
  • Dong X-C, Xu H, Wang X-W, et al. 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 2012;6(4):3206–3213.
  • Cao X, Shi Y, Shi W, et al. Preparation of novel 3D graphene networks for supercapacitor applications. Small. 2011;7(22):3163–3168.
  • Xiong L, Batchelor-McAuley C, Ward KR, et al. Voltammetry at graphite electrodes: the oxidation of hexacyanoferrate (II) (ferrocyanide) does not exhibit pure outer-sphere electron transfer kinetics and is sensitive to pre-exposure of the electrode to organic solvents. J Electroanal Chem. 2011;661(1):144–149.
  • Shulga YM, Kostanovskiy IA, Afanasev VP, et al. Experimental study of plasmon losses in graphene foam. Inter Sci J Altern Energy and Ecol. 2012;9:127–131.
  • Wen MR, Vos M. Investigation of binary compounds using electron Rutherford backscattering. Appl Phys Lett. 2007;90(7):72–104.
  • Tanuma S, Shiratori T, Kimura T, et al. Experimental determination of electron inelastic mean free paths in 13 elemental solids in the 50 to 5000 eV energy range by elastic-peak electron spectroscopy. Surf Interface Anal. 2005;37(11):833–845. DOI:10.1002/sia.2102
  • Prasai D, Tuberquia JC, Harl RR, et al. Graphene: corrosion-Inhibiting Coating. ACS Nano. 2012;6(2):1102–1108.
  • Mabbott GA. An introduction to cyclic voltammetry. J Chem Educ. 1983;60(9):697–702.
  • Ambrosi A, Pumera M. Electrochemistry at CVD grown multilayer graphene transferred onto flexible substrates. J Phys Chem C. 2013;117(5):2053–2058.
  • Figueiredi-Filho LCS, Brownson DAC, Fatibello-Filho O, et al. Electroanalytical performance of a freestanding three-dimensional graphene foam electrode. Electroanalysis. 2014;26(1):93–102.
  • Chen PH, McCreery RL. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem. 1996;68(22):3958–3965.
  • McCreery RL, McDermott MT. Comment on electrochemical kinetics at ordered graphite electrodes. Anal Chem. 2012;84(5):2602–2605.
  • Krivenko AG, Komarova NS, Stenina EV, et al. Effect of organic adsorbates on the electrochemical behaviour of carbon nanostructures. Mendeleev Communs. 2009;19(6):317–319.
  • Shang N, Kumar A, Sun N, et al. Vertical graphene nanoflakes for the immobilization, electrocatalytic oxidation and quantitative detection of DNA. Electrochem Commun. 2012;25:140–143.