Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
430
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanistic understanding of the interaction of cells with nanostructured surfaces within the framework of biological functions

&
Article: 2216529 | Received 03 May 2023, Accepted 17 May 2023, Published online: 23 May 2023

References

  • Borsari V, Giavaresi G, Fini M, et al. Physical characterization of different-roughness titanium surfaces, with and without hydroxyapatite coating, and their effect on human osteoblast-like cells. J Biomed Mater Res, Part B. 2005;75B:359–10.
  • Balasundaram G, Webster T. Increased osteoblast adhesion on nano-grained titanium modified with KRSR. J Biomed Mater Res Part A. 2007;80:602–611.
  • Willman G. Coating of implants with hydroxyapatite-material connections between bone and metal. Adv Eng Mater. 1999;1:95–105.
  • Kay S, Thapa A, Haberstroh KM, et al. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng. 2002;8: 573-561. DOI:10.1089/10763270260424114
  • McManus AJ, Doremus RH, Siegel RW, et al. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res A. 2005;72:98–106.
  • Webster TJ, Ergun C, Doremus RH, et al. Enhanced function of osteoblast on nanophase ceramics. Biomaterials. 2000;67:1803–1810.
  • Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20:1221–1227.
  • Thapa A, Webster TJ, Haberstroth KM. Polymers with nano-dimensional surface features enhance smooth muscle cell adhesion. J Biomed Mater Res A. 2003;67:1374–1383.
  • Webster TJ, Smith TA. Increased osteoblast function on PLGA composites containing nanophase titania. J Biomed Mater Res A. 2005;74A:677–686.
  • Faghihi S, Azari F, Zhilyeav AP, et al. Nanostructuring of a titanium material by high-pressure torsion improves pre-osteoblast attachment. Adv Mater Res. 2007;19:1069–1073.
  • Faghihi S, Azari F, Zhilyeav AP, et al. Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials. 2007;28:3887–3895.
  • Song R, Ponge D, Raabe D, et al. Microstructure and crystallographic texture of an ultrafine-grained C-Mn steel and their evolution during warm deformation and annealing. Acta Materialia. 2005;53:845–858.
  • Humphreys FJ, Prangnell PB, Bowen JR, et al. Developing stable fine-grain microstructures by large strain deformation. Philos Trans R Soc Of London A. 1999;357:1663–1681.
  • Pitan C, Hashimoto T, Kawazoe M, et al. Microstructure and texture evolution in ECAE processed A5056. Mater Sci Eng A. 2000;280:62–68.
  • Zhu YT, Lowe TC, Langdon TG. Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia. 2004;51:825–830.
  • Park KT, Kim YS, Shin DH. Microstructural stability of ultrafine-grained low-carbon steel containing vanadium fabricated by intense plastic straining. Metall Mater Trans A. 2001;32A:2373–2381.
  • Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scripta Materialia. 1999;40:795–800.
  • Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Materialia. 1999;47:579–583.
  • Costa ALM, Reis ACC, Kestens L, et al. Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding. Mat Sci Eng A. 2005;406:279–285.
  • Zhilyaev AP, Nurislamova GV, Kim BK, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Materialia. 2003;51:753–765.
  • Ivanisenko Y, Lojkowski W, Valiev RZ, et al. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high-pressure torsion. Acta Materialia. 2003;51:5555–5570.
  • Beladi H, Kelly GL, Shokouhi A, et al. Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion testing. Mat Sci Eng A. 2004;367:152–161.
  • Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite. Acta Materialia. 2005;53:2127–2135.
  • Belyakov A, Sakai T, Miura H, et al. Substructures and internal stresses developed under warm severe deformation of austenitic stainless steel. Scripta Materialia. 2000;42:319–325.
  • Lianxi H, Yuping L, Erde W, et al. Ultrafine grained structure and mechanical properties of an LY12 Al alloy prepared by repetitive upsetting-extrusion. Mat Sci Eng A. 2006;422:327–332.
  • Ning H, Li X, Meng L, et al. Effect of Ni and Mo on microstructure and mechanical properties of grey cast iron. Mater Technol. 2023;38:2172991.
  • Guo L, Su X, Dai L, et al. Strain ageing embrittlement behaviour of X80 self-shielded flux-cored girth weld metal. Mater Technol. 2023;38:2164978.
  • Yang C, Xu H, Wang Y, et al. Hot Tearing analysis and process optimisation of the fire face of Al-Cu alloy cylinder head based on MAGMA numerical simulation. Mater Technol. 2023;38:2165245.
  • Li Q, Zuo H, Feng J, et al. Strain rate and temperature sensitivity on the flow behaviour of a duplex stainless steel during hot deformation. Mater Technol. 2023;38:2166216.
  • Misra RDK, Injeti YSY, Somani MC. The significance of deformation mechanisms on the fracture behavior of phase-reversion induced nanostructured austenitic stainless steel. Sci Rep Nat. 2018;8:7908. 1-13.
  • Misra RDK, Challa VSA, Venkatsurya PKC, et al. Interplay between grain structure, deformation mechanisms, and austenite stability in phase reversion-induced nanograined/ultrafine-grained ferrous alloy. Acta Materialia. 2015;84:339–348.
  • Misra RDK, Nayak S, Mali S, et al. On the significance of nature of strain-induced martensite on phase-reversion induced nano grained/ultrafine-grained (NG/UFG) austenitic stainless steel. Metall Mater Trans A. 2015;41A:3–12.
  • Misra RDK. Materials Letters. 2023.
  • Misra RDK, Thein-Han WW, Pesacreta TC, et al. Favorable modulation of pre-osteoblasts response to nanograined/ultrafine-grained structures in austenitic stainless steel. Adv Mater. 2009;21:1280–1285.
  • Misra RDK, Thein-Han WW, Pesacreta TC, et al. Cellular response of pre-osteoblasts to nanograined/ultrafine-grained structures. Acta Biomaterialia. 2009;5:1455–1467.
  • Misra RDK, Thein-Han WW, Pesacreta TC, et al. Cellular biological significance of nanograined/ultrafine-grained structures: interaction with fibroblasts. Acta Biomaterialia. 2010;6:3339–3348.
  • Misra RDK, Thein-Han WW, Mali SA, et al. Cellular activity of bioactive nanograined/ultrafine-grained materials. Acta Biomaterialia. 2010;6:2826–2835.
  • Venkatsurya PKC, Thein-Han WW, Misra RDK, et al. Advancing nanograined/ultrafine-grained structures for metal implant: interplay between grooving of nano/ultrafine grains and cellular R.
  • Lowe TC, Reiss RA, Illescas, PE et al. Effect of surface grain boundary density on preosteoblast proliferation on titanium. Mater Res Lett. 2020;8:239.
  • Le Saux G, Magneau A, Gunanrathan K. Spacing of integrin ligands influences signal transduction in endothelial cells. Biophysics J. 2011;101:764–773.