Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
997
Views
2
CrossRef citations to date
0
Altmetric
Rapid Communication

Grain boundary segregation in a high entropy alloy

, ORCID Icon &
Article: 2221959 | Received 30 May 2023, Accepted 01 Jun 2023, Published online: 10 Jun 2023

References

  • Gong N, Meng TL, Cao J, et al. Laser-cladding of high entropy alloy coatings: an overview. Mater Technol. 2022;38(1):2151696. DOI:10.1080/10667857.2022.2151696
  • Tsai SP, Tsai Y-T, Chen Y-W, et al. High-entropy CoCrFeMnNi alloy subjected to high-strain-rate compressive deformation. Mater Charact. 2019;147:193. doi:10.1016/j.matchar.2018.10.028
  • Zhang M, George EP, Gibeling JC, et al. Tensile creep properties of a CrMnFeCoNi high-entropy alloy. Scripta Mater. 2021;194:11363. doi:10.1016/j.scriptamat.2020.113633
  • Wynblatt P, Chatain D. Modeling grain boundary and surface segregation in multicomponent high-entropy alloys. Phys Rev Mater. 2019;3(5):05004. doi:10.1103/PhysRevMaterials.3.054004.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213. doi:10.1016/j.msea.2003.10.257
  • Ranganathan S. Alloyed pleasures: multimetallic cocktails. Curr Sci. 2003;85:1404.
  • Misra RDK, Balasubramanian TV, Rao PR, et al. On interactions amongst trace and alloying elements at the grain boundaries of a low alloy steel. Acta Metall. 1987;35(12):2995. DOI:10.1016/0001-6160(87)90298-7
  • Misra RDK, Balasubramanian TV. Co-operative and site-competitive interaction processes at the grain boundaries of a Ni-Cr-Mo-V steel. Acta Metall. 1989;37(5):1475. doi:10.1016/0001-6160(89)90179-X.
  • Misra RDK, Balasubramanian TV. Stress enhanced grain boundary segregation of impurity elements in a low alloy steel. Acta Metall. 1990;38(7):1263. doi:10.1016/0956-7151(90)90197-O.
  • Misra RDK, Balasubramanian TV. Effects of microstructure on grain boundary segregation processes in low alloy steels. Acta Metall. 1990;38(11):2357. doi:10.1016/0956-7151(90)90103-N.
  • Misra RDK, Rama Rao P. On the grain boundary chemistry of chromium containing martensitic steels. Acta Metall. 1991;39(9):2183. doi:10.1016/0956-7151(91)90188-7.
  • Misra RDK, Rama Rao P. Grain boundary segregation in a low alloy steel under tensile loading conditions. Acta Metall. 1992;40(6):1223. doi:10.1016/0956-7151(92)90420-J.
  • Misra RDK, Rama Rao P. Influence of tensile stress on behaviour of grain boundary segregants and related interactions between trace and solute elements in 2· 6Ni–Cr–Mo–V low alloy steel. Mater Sci Technol. 1993;9:497.
  • Misra RDK. An observation concerning the contribution of temperature on the behaviour of grain boundary segregants for varied microstructures in a NiCrMoV steel. Scripta Mater. 1991;25(5):1109. DOI:10.1016/0956-716X(91)90510-8
  • Misra RDK, Rao PR. Grain boundary segregation isotherms. Mater Sci Technol. 1997;13(4):277. doi:10.1179/mst.1997.13.4.277.
  • Li YJ, Savan A, Kostka A, et al. Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Mater Horiz. 2018;5(1):86. DOI:10.1039/C7MH00486A
  • Haase C, Tang F, Wilms MB, et al. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design. Mater Sci Eng A. 2017;688:180. doi:10.1016/j.msea.2017.01.099
  • Li Z, Tasan CC, Pradeep KG, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater. 2017;131:323. doi:10.1016/j.actamat.2017.03.069
  • Thurston K, Gludovatz B, Hohenwarter A, et al. Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics. 2017;88:65. doi:10.1016/j.intermet.2017.05.009
  • Koch CC. Nanocrystalline high-entropy alloys. J Mater Res. 2017;32(18):3435. doi:10.1557/jmr.2017.341.
  • Bracq G, Laurent-Brocq M, Perrière L, et al. The FCC solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 2017;128:327. doi:10.1016/j.actamat.2017.02.017
  • Pickering EJ, Muñoz-Moreno R, Stone HJ, et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Mater. 2016;113:106. doi:10.1016/j.scriptamat.2015.10.025
  • Oto F, Iadicola MA, Gnäupel-Herold T, et al. Multiaxial constitutive behavior of an interstitial-free steel: measurements through X-ray and digital image correlation. Acta Mater. 2016;112:84–5. doi:10.1016/j.actamat.2016.04.013
  • Wynblatt P, Ku RC. Surface energy and solute strain energy effects in surface segregation. Surf Sci. 1977;65(2):511. doi:10.1016/0039-6028(77)90462-9.
  • Defay R, Ilya P. Surface tension and adsorption. New York: Wiley; 1966. p. 158.
  • Mclean D. Grain boundaries in metals. London: Oxford University Press; 1957.
  • Wynblatt P, Chatain D. Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans A. 2006;37(9):2595. doi:10.1007/BF02586096.
  • Tyson W, Wynblatt P. Observations of a two-dimensional compositional phase transition at the surface of a polycrystalline Pb?Bi?Ni alloy. Surf Sci. 1994;302(1–2):179. doi:10.1016/0039-6028(94)91107-X.