Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
1,411
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Eco-friendly green synthesis of copper nanoparticles from Tinospora cordifolia leaves: optical properties with biological evaluation of anti-microbial, anti-inflammatory and anti-oxidant applications

, , , , , & show all
Article: 2247908 | Received 29 May 2023, Accepted 10 Aug 2023, Published online: 28 Aug 2023

References

  • Sharma P, Pant S, Poonia P, et al. Green synthesis of colloidal copper nanoparticles capped with tinospora cordifolia and its application in catalytic degradation in textile dye: an ecologically sound approach. J Inorg Organomet Polym Mater. 2018;28(6):2463–13. doi: 10.1007/s10904-018-0933-5
  • Sharma P, Pant S, Dave V, et al. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J Microbiol Methods. 2019;160:107–116. doi: 10.1016/j.mimet.2019.03.007
  • Ananda Murthy HC, Desalegn T, Kassa M, et al. Synthesis of Green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. Leaf extract: Antimicrobial properties. J Nanomater. 2020;2020. Article ID 3924081:12. doi: 10.1155/2020/3924081
  • Gholami M, Azarbani F, Hadi F, et al. Eco-Friendly Synthesis of Copper Nanoparticles Using Mentha Pulegium Leaf Extract: Characterisation, Antibacterial and Cytotoxic Activities. Mater Technol. 2022;37:1523–1531. doi: 10.1080/10667857.2021.1959214
  • Selvam K, Sudhakar C, Govarthanan M, et al. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res Appl Sci. 2017;10(1):6–12. doi: 10.1016/j.jrras.2016.02.005
  • Singh K, Panghal M, Kadyan S, et al. Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. J Nanomed Nanotechnol. 2014;5(2): doi: 10.4172/2157-7439.1000192
  • Singh SS, Pandey SC, Srivastava S, et al. Chemistry and Medicinal Properties of Tinospora Cordifolia (Guduchi). Indian Journal of Pharmacology. 2003;35:83–91.
  • Jayaseelan C, Rahuman AA, Rajakumar G, et al. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res. 2011;109(1):185–194. doi: 10.1007/s00436-010-2242-y
  • Gollapudi VR, Mallavarapu U, Seetha J, et al. In situ generation of silver and silver oxide nanoparticles on cotton fabrics using Tinospora cordifolia as bio reductant. SN Applied Sci. 2020;2(3):1–10. doi: 10.1007/s42452-020-2331-1
  • Sebeia N, Jabli M, Ghith A, et al. Eco-friendly synthesis of Cynomorium coccineum extract for controlled production of copper nanoparticles for sorption of methylene blue dye. Arabian J Chem. 2020;13(2):4263–4274. doi: 10.1016/j.arabjc.2019.07.007
  • Harborne AJ Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer Science & Business Media, 1998.
  • Harborne JB. Phytochemical Methods. Netherlands, Dordrecht: Springer Netherlands; 1984. doi: 10.1007/978-94-009-5570-7
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. [14] analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods in enzymology. Elsevier; 1999. pp. 152–178. doi: 10.1016/S0076-6879(99)99017-1.
  • Dasgupta N, De B. Antioxidant activity of piper betle L. leaf extract in vitro. Food Chem. 2004;88(2):219–224. doi: 10.1016/j.foodchem.2004.01.036
  • Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009;112(3):654–658. doi: 10.1016/j.foodchem.2008.06.026
  • Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292
  • Biemer JJ. Antim icrobial susceptibility testing by the K irby-B auer disc diffusion method. Ann Clin Lab Sci. 1971;3(2):135–140.
  • Liu Y, He L, Mustapha A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7: antibacterial ZnO nanoparticles. J Appl Microbiol. 2009;107:1193–1201. doi: 10.1111/j.1365-2672.2009.04303.x
  • EG RM, Rao MN. Inhibition of albumin denaturation and antiinflammatory activity of dehydrozingerone and its analogs. Indian J Exp Biol. 1988;26(7):540–542.
  • Padmanabhan P, Jangle SN. EVALUATION of IN-VITRO ANTI-INFLAMMATORY ACTIVITY of HERBAL PREPARATION, a COMBINATION of FOUR MEDICINAL PLANTS. International Journal of Basic and Applied Medical Sciences. 2012;2(1):109–116.
  • Rani J, Singh L, Singh H, et al. Dyke-Davidoff-Masson syndrome: imaging features with illustration of two cases. Quant Imaging Med Surg. 2015;5(3):469–471. doi: 10.3978/j.issn.2223-4292.2014.11.17
  • Tungmunnithum D, Thongboonyou A, Pholboon A, et al. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. 2018;5(3):93. doi: 10.3390/medicines5030093
  • Liang T, Yue W, Li Q. Comparison of the phenolic content and antioxidant activities of Apocynum venetum L. (Luo-Bu-Ma) and two of its alternative species. IJMS. 2010;11(11):4452–4464. doi: 10.3390/ijms11114452
  • Sulaiman C, Balachandran I. Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J Pharm Sci. 2012;74(3):258. doi: 10.4103/0250-474X.106069
  • Xu D-P, Li Y, Meng X, et al. Natural antioxidants in Foods and medicinal plants: Extraction, Assessment and Resources. IJMS. 2017;18(1):96. doi: 10.3390/ijms18010096
  • Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412–422. doi: 10.1007/s13197-011-0251-1
  • Gangwar M, Gautam MK, Sharma AK, et al. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study. Sci World J. 2014;2014:1–12. doi: 10.1155/2014/279451
  • MdM R, MdB I, Biswas M, et al. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015;8(1):621. doi: 10.1186/s13104-015-1618-6
  • Sharma SK, Singh AP. In vitro antioxidant and free radical scavenging activity of nardostachys jatamansi DC. J Acupunct Meridian Stud. 2012;5(3):112–118. doi: 10.1016/j.jams.2012.03.002
  • Aberoumand A Nutritional Evaluation of Edible Portulaca Oleracia as Plant Food. Food Anal Methods. 2009;2:204–207. doi: 10.1007/s12161-008-9049-9
  • Wang H, Gao XD, Zhou GC, et al. In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chem. 2008;106(3):888–895. doi: 10.1016/j.foodchem.2007.05.068
  • Govindan P, Muthukrishnan S. Evaluation of total phenolic content and free radical scavenging activity of Boerhavia erecta. J Of Acute Med. 2013;3(3):103–109. doi: 10.1016/j.jacme.2013.06.003
  • Some S, Bulut O, Biswas K, et al. Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae). Sci Rep. 2019;9(1):14839. doi: 10.1038/s41598-019-50906-6
  • Amaliyah S, Pangesti DP, Masruri M, et al. Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon. 2020;6(8):e04636. doi: 10.1016/j.heliyon.2020.e04636
  • Shiravand S, Azarbani F. Phytosynthesis, characterization, antibacterial and cytotoxic effects of copper nanoparticles. Green Chem Lett Rev. 2017;10(4):241–249. doi: 10.1080/17518253.2017.1360401
  • Rajathi K, Sridhar S, Author C Green synthesized silver nanoparticles from the medicinal plant Wrightia Tinctoria and its antimicrobial potential
  • Rastogi L, Arunachalam J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Materials Chemistry & Physics. 2011;129(1–2):558–563. doi: 10.1016/j.matchemphys.2011.04.068
  • Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog. 2003;19(6):1627–1631. doi: 10.1021/bp034070w
  • Li Y, Xie HQ, Wang JF, et al. Study on the preparation and properties of copper nanoparticles and their nanofluids. AMR. 2011;399–401:606–609. doi: 10.4028/www.scientific.net/AMR.399-401.606
  • Din MI, Arshad F, Hussain Z, et al. Green Adeptness in the synthesis and Stabilization of copper nanoparticles: catalytic, antibacterial, Cytotoxicity, and antioxidant activities. Nanoscale Res Lett. 2017;12(1):638. doi: 10.1186/s11671-017-2399-8
  • Sankar R, Manikandan P, Malarvizhi V, et al. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:746–750. doi: 10.1016/j.saa.2013.12.020
  • Yallappa S, Manjanna J, Sindhe MA, et al. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol Biomol Spectrosc. 2013;110:108–115. doi: 10.1016/j.saa.2013.03.005
  • Das SK, MdMr K, Guha AK, et al. Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chem. 2013;15(9):2548. doi: 10.1039/c3gc40310f
  • Matkowski A, Tasarz P. Szypuła E antioxidant activity of herb extracts from five medicinal plants from Lamiaceae, subfamily lamioideae. Journal of Medicinal Plants Research. 2008;2(11):321–330.