Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
750
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Ionic liquid addition to the MAPb0.5Sn0.5I3 perovskites: the properties and optoelectronic performance analysis using DFT calculations

ORCID Icon
Article: 2254137 | Received 01 Aug 2023, Accepted 28 Aug 2023, Published online: 12 Sep 2023

References

  • Wang J, Liu H, Zhao Y, et al. Perovskite-based tandem solar cells gallop ahead. Joule. 2022;6(3):509–12. doi: 10.1016/j.joule.2022.02.011
  • Schileo G, Grancini G. Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J Mater Chem C. 2021;9(1):67–76. doi: 10.1039/d0tc04552g
  • Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 2021;598(7881):444–450. doi: 10.1038/s41586-021-03964-8
  • Matondo JT, Malouangou MD, Wu J, et al. Lead acetate (PbAc2)-derived and chloride-doped MAPbI3 solar cells with high fill factor resulting from optimized charge transport and trap state properties. Sol Energy. 2021;228(August):129–139. doi: 10.1016/j.solener.2021.09.010
  • Mbumba MT, Malouangou DM, Tsiba JM, et al. Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Sol Energy. 2021;230(October):954–978. doi: 10.1016/j.solener.2021.10.070
  • Mbumba MT, Malouangou DM, Tsiba JM, et al. Compositional engineering solutions for decreasing trap state density and improving thermal stability in perovskite solar cells. J Mater Chem C. 2021;9(40):14047–14064. doi: 10.1039/d1tc02315b
  • Liu X, Yang Z, Chueh C, et al. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by CS substitution. J Mater Chem A Mater Energy Sustain. 2016;4:17939–17945. doi: 10.1039/C6TA07712A
  • Ju MG, Sun G, Zhao Y, et al. A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn. Phys Chem Chem Phys. 2015;17(27):17679–17687. doi: 10.1039/c5cp01991e
  • Niu G, Li W, Li J, et al. Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Adv. 2017;7(28):17473–17479. doi: 10.1039/c6ra28501e
  • Korshunova K, Winterfeld L, Beenken WJD, et al. Thermodynamic stability of mixed Pb: Sn methyl-ammonium halide perovskites. Phys Status Solidi Basic Res. 2016;253(10):1907–1915. doi: 10.1002/pssb.201600136
  • Feng J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = br, I) perovskites for solar cell absorbers. APL Mater. 2014;2(8): doi: 10.1063/1.4885256
  • Kahmann S, Chen Z, Hordiichuk O, et al. Compositional variation in FAPb1-xSnxI3 and its impact on the electronic structure: a combined density functional theory and experimental study. ACS Appl Mater Interfaces. 2022;14(30):34253–34261. doi: 10.1021/acsami.2c00889
  • Borriello I, Cantele G, Ninno D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys Rev B - Condens Matter Mater Phys. 2008;77(23):1–9. doi: 10.1103/PhysRevB.77.235214
  • Shahiduzzaman M, Muslih EY, Hasan AM, et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics. Chem Eng J. 2021;411(January):128461. doi: 10.1016/j.cej.2021.128461
  • Bai S, Da P, Li C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature. 2019;571(7764):245–250. doi: 10.1038/s41586-019-1357-2
  • Huang C, Lin P, Fu N, et al. Ionic liquid modified SnO2 nanocrystals as a robust electron transporting layer for efficient planar perovskite solar cells. J Mater Chem A. 2018;6(44):22086–22095. doi: 10.1039/c8ta04131h
  • Yang D, Zhou X, Yang R, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci. 2016;9(10):3071–3078. doi: 10.1039/c6ee02139e
  • Ghosh S, Singh T. Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy. 2019;63(June):103828. doi: 10.1016/j.nanoen.2019.06.024
  • Diao X, Tang Y, Xiong D, et al. Study on the properties of perovskite materials under light and different temperatures and electric fields based on DFT. RSC Adv. 2020;10(35):20960–20971. doi: 10.1039/d0ra02841j
  • Lhouceine M, Omar B, Abdelhafid N, et al. The study of electronic and optical properties of perovskites CH3NH3PbCl3 and CH3NH3PbBr3 using first-principle. E3S Web Conf. 2022;336(January):00015. doi: 10.1051/e3sconf/202233600015
  • Soe CMM, Nagabhushana GP, Shivaramaiah R, et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc Natl Acad Sci U S A. 2019;116(1):58–66. doi: 10.1073/pnas.1811006115
  • Travis W, Glover ENK, Bronstein H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci. 2016;7(7):4548–4556. doi: 10.1039/c5sc04845a
  • Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem. 2013;52(15):9019–9038. doi: 10.1021/ic401215x
  • Baikie T, Fang Y, Kadro JM, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A. 2013;1(18):5628–5641. doi: 10.1039/c3ta10518k
  • Liu Q, Li A, Chu W, et al. Influence of intrinsic defects on the structure and dynamics of the mixed Pb-Sn perovskite: first-principles DFT and NAMD simulations. J Mater Chem A. 2022;10(1):234–244. doi: 10.1039/d1ta09027e
  • Huang J, Yuan Y, Shao Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater. 2017;2(7). doi: 10.1038/natrevmats.2017.42
  • Ahmad M, Rehman G, Ali L, et al. Structural, electronic and optical properties of CsPbX3(X=Cl, Br, I) for energy storage and hybrid solar cell applications. J Alloys Compd. 2017;705:828–839. doi: 10.1016/j.jallcom.2017.02.147
  • Kholil MI, Bhuiyan MTH, Rahman MA, et al. Effects of fe doping on the visible light absorption and bandgap tuning of lead-free (CsSnCl3) and lead halide (CsPbCl3) perovskites for optoelectronic applications. AIP Adv. 2021;11(3). doi: 10.1063/5.0042847
  • Du J, Wang Y, Zhang Y, et al. Ionic liquid-assisted improvements in the thermal stability of CH3NH3PbI3 perovskite photovoltaics. Phys Status Solidi - Rapid Res Lett. 2018;12(8):1–6. doi: 10.1002/pssr.201800130
  • Hao F, Stoumpos CC, Chang RPH, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc. 2014;136(22):8094–8099. doi: 10.1021/ja5033259
  • Mbumba MT, Zhang Y, Yang Y, et al. Role of formamidinium (FA) in the electronic and thermodynamic properties of MA(Pb: Sn)I3 perovskites using first principle calculations. Int J Adv Sci Res Eng. 2023;9(7):1–11. doi: 10.31695/IJASRE.2023.9.7.1
  • Ogomi Y, Morita A, Tsukamoto S, et al. CH 3 NH 3 Sn x Pb (1– x) I 3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett. 2014;5(6):1004–1011. doi: 10.1021/jz5002117
  • Mayengbam R, Tripathy SK, Palai G. Structural, electronic, optical and mechanical properties of Zn-doped MAPbI3 perovskites and absorber layer efficiencies: an ab-initio investigation. Mater Today Commun. 2020;24(February):101216. doi: 10.1016/j.mtcomm.2020.101216
  • Joshi TK, Pravesh GS, Verma AS. Investigation of structural, electronic, optical and thermoelectric properties of ethylammonium tin iodide (CH3CH2NH3SnI3): an appropriate hybrid material for photovoltaic application. Mater Sci Semicond Process. 2020;115(April):105111. doi: 10.1016/j.mssp.2020.105111
  • Joshi TK, Shukla A, Sharma G, et al. Computational determination of structural, electronic, optical, thermoelectric and thermodynamic properties of hybrid perovskite CH3CH2NH3GeI3: an emerging material for photovoltaic cell. Mater Chem Phys. 2020;251(April):123103. doi: 10.1016/j.matchemphys.2020.123103
  • Zheng F, Wang LW. Large polaron formation and its effect on electron transport in hybrid perovskites. Energy Environ Sci. 2019;12(4):1219–1230. doi: 10.1039/c8ee03369b
  • Zhu S, Ye J, Zhao Y, et al. Structural, electronic, stability, and optical properties of CsPb1-xSnxIBr2 perovskites: a first-principles investigation. J Phys Chem C. 2019;123(33):20476–20487. doi: 10.1021/acs.jpcc.9b04841
  • Laamari ME, Cheknane A, Benghia A, et al. Optimized opto-electronic and mechanical properties of orthorhombic methylamunium lead halides (MAPbX3) (X = I, br and cl) for photovoltaic applications. Sol Energy. 2019;182(February):9–15. doi: 10.1016/j.solener.2019.02.035
  • Sa R, Liu D, Chen Y, et al. Mixed-cation mixed-metal halide perovskites for photovoltaic applications: a theoretical study. ACS Omega. 2020;5(8):4347–4351. doi: 10.1021/acsomega.9b04484
  • Mohd Zaki NH, Ali AMM, Mohamad Taib MF, et al. Dispersion-correction density functional theory (DFT+D) and spin-orbit coupling (SOC) method into the structural, electronic, optical and mechanical properties of CH3NH3PbI3. Comput Condens Matter. 2023;34(July 2022):e00777. doi: 10.1016/j.cocom.2022.e00777
  • Mazumdar S, Zhao Y, Zhang X. Stability of perovskite solar cells: degradation mechanisms and remedies. 2021;2(August):1–34.doi: 10.3389/felec.2021.712785
  • Ha M, Karmakar A, Bernard GM, et al. Phase evolution in methylammonium tin halide perovskites with variable temperature solid-state 119 Sn NMR spectroscopy. J Phys Chem C. 2020;124(28):15015–15027. doi: 10.1021/acs.jpcc.0c03589
  • Savill KJ, Ulatowski AM, Herz LM. Optoelectronic properties of tin–lead halide perovskites. ACS Energy Lett. 2021;6(7):2413–2426. doi: 10.1021/acsenergylett.1c00776
  • Liu H, Li X, Zeng Y, et al. Effects of halogen substitutions on the properties of CH3NH3Sn0.5Pb0.5I3 perovskites. Comput Mater Sci. 2020;177(January):109576. doi: 10.1016/j.commatsci.2020.109576
  • Ašmontas S, Cerškus A. Impact of cesium concentration on optoelectronic properties of metal halide perovskites. Materials. 2022;15(5):1936. doi: 10.3390/ma15051936
  • You Q, Gu S, Gou X. The Highly accurate interatomic potential of CsPbBr3 perovskite with temperature dependence on the structure and thermal properties. Materials. 2023;16(5):2043. doi:10.3390/ma16052043
  • Ciccioli A, Latini A. Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3. J Phys Chem Lett. 2018;9(13):3756–3765. doi: 10.1021/acs.jpclett.8b00463
  • Wang P, Li R, Chen B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv Mater. 2020;32(6):1–8. doi: 10.1002/adma.201905766
  • Rahman SI, Lamsal BS, Gurung A, et al. Grain boundary defect passivation of triple cation mixed halide perovskite with hydrazine-based aromatic iodide for efficiency improvement. ACS Appl Mater Interfaces. 2020;12(37):41312–41322. doi:10.1021/acsami.0c10448
  • González-Juárez E, Espinosa-Roa A, Cadillo-Martínez AT, et al. Enhancing the stability and efficiency of MAPbI3 perovskite solar cells by theophylline-BF4− alkaloid derivatives, a theoretical-experimental approach. RSC Adv. 2023;13(8):5070–5080. doi: 10.1039/d2ra07580f
  • Chandel A, Bin Ke Q, Chiang SE, et al. Improving device performance of MAPbI3 photovoltaic cells by manipulating the crystal orientation of tetragonal perovskites. Nanotechnology. 2022;33(41): doi: 10.1088/1361-6528/ac7474
  • Raoui Y, Ez-Zahraouy H, Tahiri N, et al. Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study. Sol Energy. 2019;193(February):948–955. doi: 10.1016/j.solener.2019.10.009
  • Ashrafi SS, Hossain MK, Islam MM, et al. Characterization and fabrication of Pb-based perovskites solar cells under atmospheric condition and stability enhancement. Adv Mater Phys Chem. 2020;10(11):282–296. doi: 10.4236/ampc.2020.1011022
  • Prasanna JL, Goel E, Kumar A. Numerical investigation of MAPbI3 perovskite solar cells for performance limiting parameters. Opt Quantum Electron. 2023;55(7):1–21. doi: 10.1007/s11082-023-04876-9
  • Wang Y, Liang Y, Zhang Y, et al. Pushing the envelope: achieving an open-circuit voltage of 1.18 V for unalloyed MAPbI3 perovskite solar cells of a planar architecture. Adv Funct Mater. 2018;28(30):1801237. doi: 10.1002/adfm.201801237
  • Rajagopal A, Liang PW, Chueh CC, et al. Defect passivation via a graded fullerene heterojunction in low-bandgap Pb-Sn binary perovskite photovoltaics. ACS Energy Lett. 2017;2(11):2531–2539. doi: 10.1021/acsenergylett.7b00847
  • Kapil G, Ripolles TS, Hamada K, et al. Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure. Nano Lett. 2018;18(6):3600–3607. doi: 10.1021/acs.nanolett.8b00701
  • Ghimire N, Bobba RS, Gurung A, et al. Mitigating open-circuit voltage loss in Pb-Sn low-bandgap perovskite solar cells via additive engineering. ACS Appl Energy Mater. 2021;4(2):1731–1742. doi: 10.1021/acsaem.0c02895
  • Hu H, Moghadamzadeh S, Azmi R, et al. Sn-Pb mixed perovskites with fullerene-derivative interlayers for efficient four-terminal all-perovskite tandem solar cells. Adv Funct Mater. 2022;32(12). doi: 10.1002/adfm.202107650
  • Yao D, Mao X, Wang X, et al. Dimensionality-controlled surface passivation for enhancing performance and stability of perovskite solar cells via triethylenetetramine vapor. ACS Appl Mater Interfaces. 2020;12(5):6651–6661. doi:10.1021/acsami.9b19908
  • Lian X, Chen J, Zhang Y, et al. Highly efficient Sn/Pb binary perovskite solar cell via precursor engineering: a two-step fabrication process. Adv Funct Mater. 2019;29(5):1–9. doi: 10.1002/adfm.201807024
  • Wang Y, Yang Y, Li N, et al. Ionic liquid stabilized perovskite solar modules with Power conversion efficiency exceeding 20%. Adv Funct Mater. 2022;32(38): doi: 10.1002/adfm.202204396
  • Jahandar M, Khan N, Jahankhan M, et al. High-performance CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives. J Ind Eng Chem. 2019;80(September):265–272. doi: 10.1016/j.jiec.2019.08.004