Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
440
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

A flexible triboelectric sensor based on P(VDF-co-HFP)/MXene for breath and posture monitoring in basketball motion

& ORCID Icon
Article: 2262131 | Received 10 Aug 2023, Accepted 16 Sep 2023, Published online: 17 Oct 2023

References

  • You R, Liu YQ, Hao YL, et al. Laser fabrication of graphene‐based flexible electronics. Adv Mater. 2020;32(15):1901981. doi: 10.1002/adma.201901981
  • Huang S, Liu Y, Zhao Y, et al. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater. 2019;29(6):1805924. doi: 10.1002/adfm.201805924
  • Wang Y, Sun L, Wang C, et al. Organic crystalline materials in flexible electronics. Chem Soc Rev. 2019;48(6):1492–9. doi: 10.1039/C8CS00406D
  • Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today. 2020;35:168–194. doi: 10.1016/j.mattod.2019.11.006
  • Wang S, Zhang Y. A functional triboelectric nanogenerator based on the LiCl/PVA hydrogel for cheerleading training. Mater Technol. 2022;37(13):2752–2757. doi: 10.1080/10667857.2022.2073117
  • Nayak L, Mohanty S, Nayak SK, et al. A review on inkjet printing of nanoparticle inks for flexible electronics. J Mater Chem C. 2019;7(29):8771–8795. doi: 10.1039/C9TC01630A
  • Zhang P, Cai J. A self-powered grip exerciser based on triboelectric nanogenerator for intelligent sports monitoring. Mater Technol. 2022;37(8):753–759. doi: 10.1080/10667857.2021.1878764
  • Luo J, Gao W, Wang ZL. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv Mater. 2021;33(17):2004178. doi: 10.1002/adma.202004178
  • Wang ZL. Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv Energy Mater. 2020;10(17):2000137. doi: 10.1002/aenm.202000137
  • Zhao K, Zhang X, Lv H, et al. Boosting performance of triboelectric nanogenerator via polydimethylsiloxane modified with perovskite BiFeO3 nanoparticles. Mater Technol. 2022;37(14):3212–3221. doi: 10.1080/10667857.2022.2138804
  • Zhao Z, Zhou L, Li S, et al. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat Commun. 2021;12(1):4686. doi: 10.1038/s41467-021-25046-z
  • Kim WG, Kim DW, Tcho IW, et al. Triboelectric nanogenerator: structure, mechanism, and applications. ACS Nano. 2021;15(1):258–287. doi: 10.1021/acsnano.0c09803
  • Zhang S, Bick M, Xiao X, et al. Leveraging triboelectric nanogenerators for bioengineering. Matter. 2021;4(3):845–887. doi: 10.1016/j.matt.2021.01.006
  • Li M, Lu HW, Wang SW, et al. Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators. Nat Commun. 2022;13(1):938. doi: 10.1038/s41467-022-28575-3
  • Su Y, Chen G, Chen C, et al. Self‐powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater. 2021;33(35):2101262. doi: 10.1002/adma.202101262
  • Xiao X, Chen G, Libanori A, et al. Wearable triboelectric nanogenerators for therapeutics. Trend Chem. 2021;3(4):279–290. doi: 10.1016/j.trechm.2021.01.001
  • Zhou Y, Deng W, Xu J, et al. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep Physical Sci. 2020;1(8):100142. doi: 10.1016/j.xcrp.2020.100142
  • Ren L. A triboelectric nanogenerator based on foam for human motion posture monitoring. Mater Technol. 2022;37(9):1140–1145. doi: 10.1080/10667857.2021.1925043
  • Zhang C, Liu Y, Zhang B, et al. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021;6(4):1490–1499. doi: 10.1021/acsenergylett.1c00368
  • Wei X, Zhao Z, Zhang C, et al. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano. 2021;15(8):13200–13208. doi: 10.1021/acsnano.1c02790
  • Han G, Wu B, Pu Y. High output triboelectric nanogenerator based on scotch tape for self-powered flexible electrics. Mater Technol. 2022;37(4):224–229. doi: 10.1080/10667857.2020.1824150
  • Li X, Zhang C, Gao Y, et al. A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ Sci. 2022;15(3):1334–1345. doi: 10.1039/D1EE03961J
  • Liu S, Li X, Wang Y, et al. Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy. 2021;83:105851. doi: 10.1016/j.nanoen.2021.105851
  • Yao X. A flexible triboelectric nanogenerator based on soft foam for rehabilitation monitor after foot surgery. Mater Technol. 2022;37(10):1516–1522. doi: 10.1080/10667857.2021.1959191
  • Zhang L, Cai H, Xu L, et al. Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter. 2022;5(5):1532–1546. doi: 10.1016/j.matt.2022.02.021
  • Li X, Cao Y, Yu X, et al. Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture. Appl Energy. 2022;306:117977. doi: 10.1016/j.apenergy.2021.117977
  • Luo X, Zhu L, Wang YC, et al. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv Funct Mater. 2021;31(38):2104928. doi: 10.1002/adfm.202104928
  • Wang H, Xu L, Bai Y, et al. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat Commun. 2020;11(1):4203. doi: 10.1038/s41467-020-17891-1
  • Liu W, Wang Z, Wang G, et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat Commun. 2020;11(1):1883. doi: 10.1038/s41467-020-15373-y
  • Chen J, Guo H, He X, et al. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl Mater Inter. 2016;8(1):736–744. doi: 10.1021/acsami.5b09907
  • Li X, Huang Z, Shuck CE, et al. Mxene chemistry, electrochemistry and energy storage applications. Nat Rev Chem. 2022;6(6):389–404. doi: 10.1038/s41570-022-00384-8
  • Norizan MN, Abdullah N, Halim NA, et al. Heterojunctions of rGo/metal oxide nanocomposites as promising gas-sensing materials—A review. Nanomaterials. 2022;12(13):2278. doi: 10.3390/nano12132278
  • Tas M, Xu F, Ahmed I, et al. One‐step fabrication of superhydrophobic P (VDF‐co‐HFP) nanofibre membranes using electrospinning technique. J Appl Polym Sci. 2020;137(24):48817. doi: 10.1002/app.48817
  • Lee S, Kim M, Cao VA, et al. High performance flexible electromagnetic interference shielding material realized using ZnO nanorod decorated polyvinylidene fluoride (PVDF)-MXene composite nanofibers. J Mater Chem C. 2023;11(4):1522–1529. doi: 10.1039/D2TC04080H
  • Aakyiir M, Tanner B, Yap PL, et al. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors. Journal Of Materials Science & Technology. 2022;117:174–182. doi: 10.1016/j.jmst.2021.11.048
  • Wang W, Yuen ACY, Long H, et al. Random nano-structuring of PVA/MXene membranes for outstanding flammability resistance and electromagnetic interference shielding performances. Composites. 2021;224:109174. doi: 10.1016/j.compositesb.2021.109174
  • Cui S, Zhou L, Liu D, et al. Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter. 2022;5(1):180–193. doi: 10.1016/j.matt.2021.10.019