Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
939
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of biofabricated silver nanoparticles from Syzygium aromaticum seeds: spectral characterization and evaluation of its anti-mycobacterial activity, cytotoxicity assessment on zebrafish embryo and Artemia salina

, , , , ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Article: 2269358 | Received 28 Aug 2023, Accepted 06 Oct 2023, Published online: 23 Oct 2023

References

  • Mwaba P, Chakaya JM, Petersen E, et al. Advancing new diagnostic tests for latent tuberculosis infection due to multidrug-resistant strains of Mycobacterium tuberculosis — end of the road? Inter J Infect Dis. 2020;92:S69–13. doi: 10.1016/j.ijid.2020.02.011
  • Jafari AR, Mosavi T, Mosavari N, et al. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells. Int J Mycobacteriol. 2016;5:S181–S183. doi: 10.1016/j.ijmyco.2016.09.011
  • Bihon A, Zinabu S, Muktar Y, et al. Human and bovine tuberculosis knowledge, attitude and practice (KAP) among cattle owners in Ethiopia. Heliyon. 2021;7(3):e06325. doi: 10.1016/j.heliyon.2021.e06325
  • Lee KK, Bing R, Kiang J, et al. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Glob Health. 2020;8(11):e1427–e1434. doi: 10.1016/S2214-109X(20)30343-0
  • Zhao L, Cao B, Borghi E, et al. Data gaps towards health development goals, 47 low- and middle-income countries. Bull World Health Org. 2022;100(1):40–49. doi: 10.2471/BLT.21.286254
  • Chen C-C, Chen Y-Y, Yeh C-C, et al. Alginate-capped silver nanoparticles as a potent anti-mycobacterial agent against Mycobacterium tuberculosis. Front Pharmacol. 2021;12:746496. doi: 10.3389/fphar.2021.746496
  • Asghar MA, Yousuf RI, Shoaib MH, et al. Green synthesis and characterization of carboxymethyl cellulose fabricated silver-based nanocomposite for various therapeutic applications [retraction]. IJN. 2022;17:987–988. doi: 10.2147/IJN.S364552
  • Bajpai SK, Kumari M. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels. Int j biol macromol. 2015;80:177–188. doi: 10.1016/j.ijbiomac.2015.06.048
  • Hussain M, Nafady A, Sirajuddin, et al. Biogenic silver nanoparticles for trace colorimetric sensing of enzyme disrupter fungicide vinclozolin. Nanomaterials. 2019;9(11):1604. doi: 10.3390/nano9111604
  • Mehmood Y, Farooq U, Yousaf H et al. Antiviral activity of green silver nanoparticles produced using aqueous buds extract of Syzygium aromaticum. Pak J Pharm Sci. 2020; 33: 839–845.
  • Venugopal K, Rather HA, Rajagopal K, et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol, B. 2017;167:282–289. doi: 10.1016/j.jphotobiol.2016.12.013
  • Nartop P. Effects of surface sterilisation with green synthesised silver nanoparticles on Lamiaceae seeds. IET Nanobiotechnol. 2018;12(5):663–668. doi: 10.1049/iet-nbt.2017.0195
  • Acharya D, Satapathy S, Somu P, et al. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from Marine algae chaetomorpha Linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res. 2021;199(5):1812–1822. doi: 10.1007/s12011-020-02304-7
  • Robinson AM, Zhao L, Shah Alam MY, et al. The development of “fab-chips” as low-cost, sensitive surface-enhanced raman spectroscopy (SERS) substrates for analytical applications. Analyst. 2015;140(3):779–785. doi: 10.1039/C4AN01633E
  • Jaryal N, Kaur H. Plumbago auriculata leaf extract-mediated AgNPs and its activities as antioxidant, anti-TB and dye degrading agents. J Biomater Sci Polym Ed. 2017;28(16):1847–1858. doi: 10.1080/09205063.2017.1354673
  • Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. IJN. 2020;15:2555–2562. doi: 10.2147/IJN.S246764
  • Jafari A, Nagheli A, Foumani AA, et al. The role of metallic nanoparticles in inhibition of Mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage. Oman Med J. 2020;35(6):e194–e194. doi: 10.5001/omj.2020.78
  • Sampath S, Bhushan M, Saxena V, et al. Green synthesis of Ag doped ZnO nanoparticles: study of their structural, optical, thermal and antibacterial properties. Mater Technol. 2022;1–10.
  • Saikumari D, Rani SKS, Saxena N. Antibacterial activity of Syzygium aromaticum L (clove). Int J Curr Microbiol App Sci. 2016;5(11):484–489. doi: 10.20546/ijcmas.2016.511.056
  • Lee K-G, Shibamoto T. Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) merr. et Perry]. Food Chem. 2001;74(4):443–448. doi: 10.1016/S0308-8146(01)00161-3
  • Daoud A, Malika D, Bakari S, et al. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of date palm pollen (DPP) from two Tunisian cultivars. Arabian J Chem. 2019;12(8):3075–3086. doi: 10.1016/j.arabjc.2015.07.014
  • Roy A, Bulut O, Some S, et al. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673–2702. doi: 10.1039/C8RA08982E
  • Gupta VK, Kaushik A, Chauhan DS, et al. Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms. J Ethnopharmacol. 2018;227:113–120. doi: 10.1016/j.jep.2018.08.031
  • Asharani PV, Lian Wu Y, Gong Z, et al. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19(25):255102. doi: 10.1088/0957-4484/19/25/255102
  • Sangian H, Faramarzi H, Yazdinezhad A, et al. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol Res. 2013;112(11):3697–3701. doi: 10.1007/s00436-013-3555-4
  • Vijayaraghavan K, Nalini SPK, Prakash NU, et al. Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett. 2012;75:33–35. doi: 10.1016/j.matlet.2012.01.083
  • Link S, El-Sayed MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem. 2003;54(1):331–366. doi: 10.1146/annurev.physchem.54.011002.103759
  • Majeed A, Ullah W, Anwar AW, et al. Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: a review. Mater Technol. 2018;33(5):313–320. doi: 10.1080/10667857.2015.1108065
  • Prakash MVD, Sampath S, Amudha K, et al. Eco-friendly green synthesis of copper nanoparticles from Tinospora cordifolia leaves: optical properties with biological evaluation of anti-microbial, anti-inflammatory and anti-oxidant applications. Mater Technol. 2023;38(1):2247908. doi: 10.1080/10667857.2023.2247908
  • Jardón-Romero EA, Lara-Carrillo E, González-Pedroza MG, et al. Antimicrobial activity of biogenic silver nanoparticles from Syzygium aromaticum against the Five most common microorganisms in the oral cavity. Antibiotics. 2022;11(7):834. doi: 10.3390/antibiotics11070834
  • Mohammed SSS, Lawrance AV, Sampath S, et al. Facile green synthesis of silver nanoparticles from sprouted Zingiberaceae species: spectral characterisation and its potential biological applications. Mater Technol. 2022;37(8):533–546. doi: 10.1080/10667857.2020.1863571
  • Dashora A, Rathore K, Raj S, et al. Synthesis of silver nanoparticles employing polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen. Biochem Biophys Rep. 2022;31:101320. doi: 10.1016/j.bbrep.2022.101320
  • Chaitanyakumar A, Yadav KK, Gomez LA, et al. Biogenically engineered silver nanoparticles using bael leaf extract and evaluation of its therapeutic potential. Mater Technol. 2022;37(11):1617–1628. doi: 10.1080/10667857.2021.1965701
  • Singhal G, Bhavesh R, Kasariya K, et al. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res. 2011;13(7):2981–2988. doi: 10.1007/s11051-010-0193-y
  • Arumai Selvan DS, Keerthi M, Murugesan S, et al. In vitro cytotoxicity efficacy of phytosynthesized Ag/ZnO nanocomposites using Murraya koenigii and Zingiber officinale extracts. Mater Chem Phys. 2021;272:124903. doi: 10.1016/j.matchemphys.2021.124903
  • Gul R, Saddique M, Khan MA, et al. Eco-friendly synthesis of silver nanoparticles and its biological evaluation using Tamarix aphylla leaves extract. Mater Technol. 2022;37(9):962–969. doi: 10.1080/10667857.2021.1908770
  • Nirmala MJ, Durai L, Gopakumar V, et al. Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. IJN. 2019;14:6439–6450. doi: 10.2147/IJN.S211047
  • Hadidi M, Pouramin S, Adinepour F, et al. Chitosan nanoparticles loaded with clove essential oil: characterization, antioxidant and antibacterial activities. Carbohydr Polym. 2020;236:116075. doi: 10.1016/j.carbpol.2020.116075
  • Prasad R, Vyshnava SS. Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles. 2013;2013:1–6. doi: 10.1155/2013/431218
  • Gholami M, Azarbani F, Hadi F, et al. Eco-friendly synthesis of copper nanoparticles using Mentha pulegium leaf extract: characterisation, antibacterial and cytotoxic activities. Mater Technol. 2022;37(10):1523–1531. doi: 10.1080/10667857.2021.1959214
  • Bernardo WDC, Boriollo MFG, Tonon CC, et al. Biosynthesis of silver nanoparticles from Syzygium cumini leaves and their potential effects on odontogenic pathogens and biofilms. Front Microbiol. 2022;13:995521. doi: 10.3389/fmicb.2022.995521
  • Muthu K, Rajeswari S, Akilandaeaswari B, et al. Synthesis, characterisation and photocatalytic activity of silver nanoparticles stabilised by Punica granatum seeds extract. Mater Technol. 2021;36(11):684–693. doi: 10.1080/10667857.2020.1786786
  • Dejen KD, Kibret DY, Mengesha TH, et al. Green synthesis and characterisation of silver nanoparticles from leaf and bark extract of Croton macrostachyus for antibacterial activity. Mater Technol. 2023;38(1):2164647. doi: 10.1080/10667857.2022.2164647
  • Girase B, Depan D, Shah JS, et al. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31(8):1759–1766. doi: 10.1016/j.msec.2011.08.007
  • Palomino J-C, Martin A, Camacho M, et al. Resazurin microtiter assay plate: simple and Inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46(8):2720–2722. doi: 10.1128/AAC.46.8.2720-2722.2002
  • Rajabi S, Ramazani A, Hamidi M, et al. Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU, J Pharm Sci. 2015;23(1):20. doi: 10.1186/s40199-015-0105-x