Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
528
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biocompatibility and antibacterial activity studies of gellan gum and alginate thin film encapsulating curcumin as a wound skin care dressing

, , , , &
Article: 2282321 | Received 28 Aug 2023, Accepted 07 Nov 2023, Published online: 22 Nov 2023

References

  • Prakash J, Venkataprasanna KS, Bharath G, et al. In-vitro evaluation of electrospun cellulose acetate nanofiber containing Graphene oxide/TiO2/Curcumin for wound healing application. Colloids Surf A Physicochem Eng Asp. 2021;627:127166. doi: 10.1016/j.colsurfa.2021.127166
  • Zhang M, Fan Z, Zhang J, et al. Multifunctional chitosan/alginate hydrogel incorporated with bioactive glass nanocomposites enabling photothermal and nitric oxide release activities for bacteria-infected wound healing. Int J Biol Macromol. 2023;232:123445. doi: 10.1016/j.ijbiomac.2023.123445
  • Fan MH, Zhu Q, Li HH, et al. Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lungs in mice. J Biol Chem. 2016;291(15):8070–18. doi: 10.1074/jbc.M115.701433
  • Zhu Y, Hoshi R, Chen S, et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release. 2016;238:114–122. doi: 10.1016/j.jconrel.2016.07.043
  • Andrade S, Ramalho MJ, Loureiro JA, et al. Natural compounds for Alzheimer’s disease therapy: a systematic review of preclinical and clinical studies. Int J Mol Sci. 2019;20(9):2313. doi: 10.3390/ijms20092313
  • Yen YH, Pu CM, Liu CW, et al. Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of TNF‐α, MMP‐9, α‐SMA, and collagen. Int Wound J. 2018;15(4):605–617. doi: 10.1111/iwj.12904
  • Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–818. doi: 10.1021/mp700113r
  • Khan S, Imran M, Butt TT, et al. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: new developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci Technol. 2018;80:8–22. doi: 10.1016/j.tifs.2018.07.026
  • Liu J, Chen Z, Wang J, et al. Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Appl Mater Inter. 2018;10(19):16315–16326. doi: 10.1021/acsami.8b03868
  • Balan P, Mal G, Das S, et al. Synergistic and additive antimicrobial activities of curcumin, manuka honey and whey proteins. J Food Biochem. 2016;40(5):647–654. doi: 10.1111/jfbc.12249
  • Dong Y, Rao Z, Liu Y, et al. Soluble soybean polysaccharide/gelatin active edible films incorporated with curcumin for oil packaging. Food Pack Shelf Life. 2023;35:101039. doi: 10.1016/j.fpsl.2023.101039
  • Sharma G, Raturi K, Dang S, et al. Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis. J Asian Nat Prod Res. 2014;16(5):535–541. doi: 10.1080/10286020.2014.911289
  • Varshney GK, Saini RK, Gupta PK, et al. Effect of curcumin on the diffusion kinetics of a hemicyanine dye, LDS-698, across a lipid bilayer probed by second harmonic spectroscopy. Langmuir. 2013;29(9):2912–2918. doi: 10.1021/la304778d
  • Barry J, Fritz M, Brender JR, et al. Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. J Am Chem Soc. 2009;131(12):4490–4498. doi: 10.1021/ja809217u
  • Rai D, Singh JK, Roy N, et al. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J. 2008;410(1):147–155. doi: 10.1042/BJ20070891
  • Kaur S, Modi NH, Panda D, et al. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ–a structural insight to unveil antibacterial activity of curcumin. Eur J Med Chem. 2010;45(9):4209–4214. doi: 10.1016/j.ejmech.2010.06.015
  • Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem. 2008;56(6):1955–1962. doi: 10.1021/jf072591j
  • Saha S, Pramanik K, Biswas A. Antibacterial activity and biocompatibility of curcumin/TiO2 nanotube array system on Ti6Al4V bone implants. Mater Technol. 2021;36(4):221–232. doi: 10.1080/10667857.2020.1742984
  • Kharat M, Du Z, Zhang G, et al. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem. 2017;65(8):1525–1532. doi: 10.1021/acs.jafc.6b04815
  • Hafez Ghoran S, Calcaterra A, Abbasi M, et al. Curcumin-based nanoformulations: a promising adjuvant towards cancer treatment. Molecules. 2022;27(16):5236. doi: 10.3390/molecules27165236
  • Andrabi SM, Majumder S, Gupta KC, et al. Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing. Colloids Surf B Biointerfaces. 2020;195:111263. doi: 10.1016/j.colsurfb.2020.111263
  • Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim). 2010;343(9):489–499. doi: 10.1002/ardp.200900319
  • Subramani PA, Panati K, Narala VR. Curcumin nanotechnologies and its anticancer activity. Nutr Cancer. 2017;69(3):381–393. doi: 10.1080/01635581.2017.1285405
  • Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978;43(2):86–92. doi: 10.1111/j.1600-0773.1978.tb02240.x
  • Li H, Yan L, Tang EK, et al. Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo. Front Pharmacol. 2019;10:769. doi: 10.3389/fphar.2019.00769
  • Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res. 2023;33(1):53–64. doi: 10.1080/08982104.2022.2086567
  • Mahmoudi A, Kesharwani P, Majeed M, et al. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces. 2022;215:112481. doi: 10.1016/j.colsurfb.2022.112481
  • Fernando IPS, Lee W, Han EJ, et al. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chem Eng J. 2020;391:123823. doi: 10.1016/j.cej.2019.123823
  • Ahmad A, Mubarak NM, Jannat FT, et al. A critical review on the synthesis of natural sodium alginate based composite materials: an innovative biological polymer for biomedical delivery applications. Processes. 2021;9(1):137. doi: 10.3390/pr9010137
  • Hishamuddin NI, Razali MH, Mat Amin KA. Application of gellan gum biopolymer in biomedical applications: a review. Makara J Sci. 2022;26(1):2.
  • Das M, Giri TK. Hydrogels based on gellan gum in cell delivery and drug delivery. J Drug Delivery Sci Technol. 2020;56:101586. doi: 10.1016/j.jddst.2020.101586
  • Subbuvel M, Kavan P. Development and investigation of antibacterial and antioxidant characteristics of poly lactic acid films blended with neem oil and curcumin. J Appl Polym Sci. 2022;139(14):51891. doi: 10.1002/app.51891
  • De Mohac LM, Caruana R, Cavallaro G, et al. Spray-drying, solvent-casting and freeze-drying techniques: a comparative study on their suitability for the enhancement of drug dissolution rates. Pharm Res. 2020;37(3):1–11. doi: 10.1007/s11095-020-2778-1
  • Kakran M, Sahoo NG, Tan IL, et al. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanopart Res. 2012;14(3):1–11. doi: 10.1007/s11051-012-0757-0
  • Liu J, Ismail NA, Yusoff M, et al. Physicochemical properties and antibacterial activity of gellan gum incorporating zinc oxide/carbon nanotubes bionanocomposite film for wound healing. Bioinorg Chem Appl. 2022;2022:1–12. doi: 10.1155/2022/3158404
  • Poornima B, Korrapati PS. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr Polym. 2017;157:1741–1749. doi: 10.1016/j.carbpol.2016.11.056
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71–79. doi: 10.1016/j.jpha.2015.11.005
  • gjgfjfj
  • Kim Y, Park EJ, Kim TW, et al. Recent progress in drug release testing methods of biopolymeric particulate system. Pharmaceutics. 2021;13(8):1313. doi: 10.3390/pharmaceutics13081313
  • Lao LL, Venkatraman SS, Peppas NA. Modeling of drug release from biodegradable polymer blends. Eur J Pharm Biopharm. 2008;70(3):796–803. doi: 10.1016/j.ejpb.2008.05.024
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4
  • Doostan M, Doostan M, Mohammadi P, et al. Wound healing promotion by flaxseed extract-loaded polyvinyl alcohol/chitosan nanofibrous scaffolds. Int j biol macromol. 2023;228:506–516. doi: 10.1016/j.ijbiomac.2022.12.228
  • You C, Li Q, Wang X, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7(1):10489. doi: 10.1038/s41598-017-10481-0
  • Radstake WE, Gautam K, Van Rompay C, et al. Comparison of in vitro scratch wound assay experimental procedures. Biochem Biophys Rep. 2023;33:101423. doi: 10.1016/j.bbrep.2023.101423
  • Postolović K, Ljujić B, Kovačević MM, et al. Optimization, characterization, and evaluation of carrageenan/alginate/poloxamer/curcumin hydrogel film as a functional wound dressing material. Mater Today Commun. 2022;31:103528. doi: 10.1016/j.mtcomm.2022.103528
  • Ismail NA, Amin KAM, Majid FAA, et al. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mater Sci Eng C. 2019;103:109770. doi: 10.1016/j.msec.2019.109770
  • Razali MH, Ismail NA, Amin KAM. Titanium dioxide nanotubes incorporated gellan gum bio-nanocomposite film for wound healing: Effect of TiO2 nanotubes concentration. Int J Biol Macromol. 2020;153:1117–1135. doi: 10.1016/j.ijbiomac.2019.10.242
  • Ismail NA, Amin KAM, Razali MH. Novel gellan gum incorporated TiO2 nanotubes film for skin tissue engineering. Mater Lett. 2018;228:116–120. doi: 10.1016/j.matlet.2018.05.140
  • Badita CR, Aranghel D, Burducea C, et al. Characterization of sodium alginate based films. Rom J Phys. 2020;65:1–8.
  • Larosa C, Salerno M, de Lima JS, et al. Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int J Biol Macromol. 2018;115:900–906. doi: 10.1016/j.ijbiomac.2018.04.138
  • Kirupha SD, Elango S, Vadodaria K. Fabrication of nanofibrous membrane using stingless bee honey and curcumin for wound healing applications. J Drug Delivery Sci Technol. 2021;63:102271. doi: 10.1016/j.jddst.2020.102271
  • Dong K, Xu K, Wei N, et al. Three-dimensional porous sodium alginate/gellan gum environmentally friendly aerogel: preparation, characterization, adsorption, and kinetics studies. Chem Eng Res Des. 2022;179:227–236. doi: 10.1016/j.cherd.2022.01.027
  • Busto F, Licini C, Luccarini A, et al. Oleuropein-rich gellan gum/alginate films as innovative treatments against photo-induced skin aging. Molecules. 2023;28(11):4352. doi: 10.3390/molecules28114352
  • Zia KM, Tabasum S, Khan MF, et al. Recent trends on gellan gum blends with natural and synthetic polymers: a review. Int J Biol Macromol. 2018;109:1068–1087. doi: 10.1016/j.ijbiomac.2017.11.099
  • Das S, Mondal S. Formulation and in vitro study of Ibuprofen loaded crosslinked sodium alginate and gellan gum microspheres. Int J Adv Pharm. 2017;6(3):86–90.
  • Yang H, Wang W, Zhang J, et al. Preparation, characterization, and drug-release behaviors of a pH-sensitive composite hydrogel bead based on guar gum, attapulgite, and sodium alginate. Int J Polym Mater Polym Biomater. 2013;62(7):369–376. doi: 10.1080/00914037.2012.706839
  • Xing J, Peng X, Li A, et al. Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. Carbohydr Polym. 2021;270:118382. doi: 10.1016/j.carbpol.2021.118382
  • Mahmoud R, Safwat N, Fathy M, et al. Novel anti-inflammatory and wound healing controlled released LDH-curcumin nanocomposite via intramuscular implantation, in-vivo study. Arabian J Chem. 2022;15(3):103646. doi: 10.1016/j.arabjc.2021.103646
  • Niranjan R, Kaushik M, Prakash J, et al. Enhanced wound healing by PVA/Chitosan/curcumin patches: in vitro and in vivo study. Colloids Surf B Biointerfaces. 2019;182:110339. doi: 10.1016/j.colsurfb.2019.06.068
  • Rosland Abel SE, Yusof YA, Chin NL, et al. Characterisation of physicochemical properties of gum arabic powder at various particle sizes. Food Res. 2020;4(S1):107–115. doi: 10.26656/fr.2017.4(S1).S32
  • Makhado E, Hato MJ. Preparation and characterization of sodium alginate-based oxidized multi-walled carbon nanotubes hydrogel nanocomposite and its adsorption behaviour for methylene blue dye. Front Chem. 2021;9:576913. doi: 10.3389/fchem.2021.576913
  • Hosseini-Zare MS, Sarhadi M, Zarei M, et al. Synergistic effects of curcumin and its analogs with other bioactive compounds: a comprehensive review. Eur J Med Chem. 2021;210:113072. doi: 10.1016/j.ejmech.2020.113072
  • Rezagholizade-Shirvan A, Najafi MF, Behmadi H, et al. Preparation of nano-composites based on curcumin/chitosan-PVA-alginate to improve stability, antioxidant, antibacterial and anticancer activity of curcumin. Inorg Chem Commun. 2022;145:110022. doi: 10.1016/j.inoche.2022.110022
  • Mohammadian M, Salami M, Moghadam M, et al. Mung bean protein as a promising biopolymeric vehicle for loading of curcumin: Structural characterization, antioxidant properties, and in vitro release kinetics. J Drug Delivery Sci Technol. 2021;61:102148. doi: 10.1016/j.jddst.2020.102148
  • Casadey R, Broglia M, Barbero C, et al. Controlled release systems of natural phenolic antioxidants encapsulated inside biocompatible hydrogels. React Funct Polym. 2020;156:104729. doi: 10.1016/j.reactfunctpolym.2020.104729
  • Geevarghese AV, Kasmani FB, Dolatyabi S. Curcumin and curcumin nanoparticles counteract the biological and managemental stressors in poultry production: an updated review. Res Vet Sci. 2023;162:104958. doi: 10.1016/j.rvsc.2023.104958
  • Cai X, He Y, Cai L, et al. An injectable elastic hydrogel crosslinked with curcumin–gelatin nanoparticles as a multifunctional dressing for the rapid repair of bacterially infected wounds. Biomater Sci. 2023;11(9):3227–3240. doi: 10.1039/D2BM02126A
  • Roy S, Min SJ, Biswas D, et al. Pullulan/chitosan-based functional film incorporated with curcumin-integrated chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp. 2023;660:130898. doi: 10.1016/j.colsurfa.2022.130898
  • Łupina K, Kowalczyk D, Lis M, et al. Antioxidant polysaccharide/gelatin blend films loaded with curcumin—A comparative study. Int J Biol Macromol. 2023;236:123945. doi: 10.1016/j.ijbiomac.2023.123945
  • Meiguni MSM, Salami M, Rezaei K, et al. Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation. Int J Biol Macromol. 2023;224:170–180. doi: 10.1016/j.ijbiomac.2022.10.113
  • Nasiri SS, Ahmadi Z, Afshar-Taromi F. Design and characterization of poly (glycerol sebacate)/Poly (3-hydroxybutyrate)/bioglass/curcumin nanocomposite scaffold for wound healing application. Int J Biol Macromol. 2023;245:125521. doi: 10.1016/j.ijbiomac.2023.125521
  • Duan M, Sun J, Huang Y, et al. Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. Food Sci Hum Wellness. 2023;12(2):614–621. doi: 10.1016/j.fshw.2022.07.064
  • Rashid N, Khalid SH, Ullah Khan I, et al. Curcumin-loaded bioactive polymer composite film of PVA/Gelatin/Tannic acid Downregulates the Pro-inflammatory Cytokines to expedite healing of full-thickness wounds. ACS Omega. 2023;8(8):7575–7586. doi: 10.1021/acsomega.2c07018
  • Kour P, Afzal S, Gani A, et al. Effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the release kinetics, antioxidant potential and antibacterial activity of encapsulated curcumin. Food Chem. 2022;376:131925. doi: 10.1016/j.foodchem.2021.131925
  • Kenawy ERS, Kamoun EA, Ghaly ZS, et al. Novel physically cross-linked curcumin-loaded PVA/aloe vera hydrogel membranes for acceleration of topical wound healing: in vitro and in vivo experiments. Arab J Sci Eng. 2023;48(1):497–514. doi: 10.1007/s13369-022-07283-6
  • Alizadeh N, Malakzadeh S. Antioxidant, antibacterial and anti-cancer activities of β-and γ-CDs/curcumin loaded in chitosan nanoparticles. Int J Biol Macromol. 2020;147:778–791. doi: 10.1016/j.ijbiomac.2020.01.206
  • Zheng D, Huang C, Huang H, et al. Antibacterial mechanism of curcumin: A review. Chem Biodivers. 2020;17(8):e2000171. doi: 10.1002/cbdv.202000171
  • Nakagawa S, Matsumoto M, Katayama Y, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host & Microbe. 2017;22(5):667–677.e5. doi: 10.1016/j.chom.2017.10.008
  • Selvam C, Prabu SL, Jordan BC, et al. Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sci. 2019;239:117032. doi: 10.1016/j.lfs.2019.117032
  • Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine. 2015;11(1):195–206. doi: 10.1016/j.nano.2014.09.004
  • Guo LY, Yan SZ, Tao X, et al. Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus aureus antibiotic-resistant bacterial infection. Mater Sci Eng C. 2020;106:110230. doi: 10.1016/j.msec.2019.110230
  • Tyagi P, Singh M, Kumari H, et al. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. 2015;10(3):e0121313. doi: 10.1371/journal.pone.0121313
  • Liu J, Xu L, Liu C, et al. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym. 2012;90(1):16–22. doi: 10.1016/j.carbpol.2012.04.036
  • Fathi M, Emam-Djomeh Z, Aliabbasi N. Developing two new types of nanostructured vehicles to improve biological activity and functionality of curcumin. Food Biosci. 2021;44:101386.87. doi: 10.1016/j.fbio.2021.101386
  • Sari TP, Mann B, Kumar R, et al. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids. 2015;43:540–546.89. doi: 10.1016/j.foodhyd.2014.07.011
  • Li R, Lin Z, Zhang Q, et al. Injectable and in situ-formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence. ACS Appl Mater Inter. 2020;12(15):17936–17948. doi: 10.1021/acsami.9b21528
  • Samadi A, Haseli S, Pourmadadi M, et al., 2020, November. Curcumin-loaded chitosan-agarose-montmorillonite hydrogel nanocomposite for the treatment of breast cancer. In 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran (pp. 148–153). IEEE.
  • Peng S, Li Z, Zou L, et al. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food Funct. 2018;9(3):1829–1839. doi: 10.1039/C7FO01814B
  • Mandal B, Rameshbabu AP, Soni SR, et al. In situ silver nanowire deposited cross-linked carboxymethyl cellulose: a potential transdermal anticancer drug carrier. ACS Appl Mater Inter. 2017;9(42):36583–36595. doi: 10.1021/acsami.7b10716
  • Rajaei H, Mofazzal Jahromi MA, Khoramabadi N, et al. Immunoregulatory properties of arteether in folic acid-chitosan-Fe3O4 composite nanoparticle in 4T1 cell line and mice bearing breast cancer. Immunoregulation. 2020;2(2):89–102. doi: 10.32598/IMMUNOREGULATION.1.4.207
  • Deka R, Sarmah JK, Baruah S, et al. An okra polysaccharide (abelmoschus esculentus) reinforced green hydrogel based on guar gum and poly-vinyl alcohol double network for controlled release of nanocurcumin. Int J Biol Macromol. 2023;234:123618. doi: 10.1016/j.ijbiomac.2023.123618
  • Sundar S, Mariappan R, Piraman S. Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug. Powder Technol. 2014;266:321–328. doi: 10.1016/j.powtec.2014.06.033
  • Mosallanezhad P, Nazockdast H, Ahmadi Z, et al. Fabrication and characterization of polycaprolactone/chitosan nanofibers containing antibacterial agents of curcumin and ZnO nanoparticles for use as wound dressing. Front Bioeng Biotechnol. 2022;10:59–72. doi: 10.3389/fbioe.2022.1027351
  • Shahrousvand M, Hajikhani M, Nazari L, et al. Preparation of colloidal nanoparticles PVA-PHEMA from hydrolysis of copolymers of PVAc-PHEMA as anticancer drug carriers. Nanotechnology. 2022;33(27):275603. doi: 10.1088/1361-6528/ac6089
  • Babaluei M, Mottaghitalab F, Seifalian A, et al. Injectable multifunctional hydrogel based on carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C and curcumin promoted full-thickness burn regeneration. Int J Biol Macromol. 2023;236:124005. doi: 10.1016/j.ijbiomac.2023.124005
  • Karri VVSR, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93:1519–1529. doi: 10.1016/j.ijbiomac.2016.05.038
  • Zhang M, Zhang J, Chen J, et al. Fabrication of curcumin modified TiO2 nanoarrays via cyclodextrin based polymer functional coatings for osteosarcoma therapy. Adv Healthcare Mater. 2019;8(23):1901031. doi: 10.1002/adhm.201901031
  • Ma J, Yu H, Liu J, et al. Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats. Neurosci lett. 2016;610:139–143. doi: 10.1016/j.neulet.2015.11.005
  • Thangapazham RL, Sharad S, Maheshwari RK. Skin regenerative potentials of curcumin. BioFactors. 2013;39(1):141–149. doi: 10.1002/biof.1078
  • Sinno H, Prakash S. Complements and the wound healing cascade: an updated review. Plast Surg Int. 2013;2013:1–7. doi: 10.1155/2013/146764
  • Akbik D, Ghadiri M, Chrzanowski W, et al. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1–7. doi: 10.1016/j.lfs.2014.08.016
  • Bahramsoltani R, Farzaei MH, Rahimi R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res. 2014;306(7):601–617. doi: 10.1007/s00403-014-1474-6
  • Rezkita F, Wibawa KG, Nugraha AP. Curcumin loaded chitosan nanoparticle for accelerating the post extraction wound healing in diabetes mellitus patient: a review. Res J Pharm Technol. 2020;13(2):1039–1042. doi: 10.5958/0974-360X.2020.00191.2
  • Phan TT, See P, Lee ST, et al. Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. J Trauma Acute Care Surg. 2001;51(5):927–931. doi: 10.1097/00005373-200111000-00017
  • Laurano R, Boffito M, Ciardelli G, et al. Wound dressing products: a translational investigation from the bench to the market. Eng Regener. 2022;3(2):182–200. doi: 10.1016/j.engreg.2022.04.002
  • Perumal G, Pappuru S, Chakraborty D, et al. Synthesis and characterization of curcumin loaded PLA—hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater Sci Eng C. 2017;76:1196–1204. doi: 10.1016/j.msec.2017.03.200
  • Koyyada A, Orsu P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with reduced graphene oxide for in vitro and in vivo wound healing applications. Int J Pharmaceut. 2021;607:121035. doi: 10.1016/j.ijpharm.2021.121035
  • Abolghasemzade S, Pourmadadi M, Rashedi H, et al. PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model. J Mat Chem B. 2021;9(3):658–676. doi: 10.1039/D0TB01747G
  • Nemati D, Ashjari M, Rashedi H, et al. PVA based nanofiber containing cellulose modified with graphitic carbon nitride/nettles/trachyspermum accelerates wound healing. Biotechnol Prog. 2021;37(6):e3200. doi: 10.1002/btpr.3200
  • Szymańska E, Wojasiński M, Czarnomysy R, et al. Chitosan-enriched solution blow spun poly (ethylene oxide) nanofibers with poly (dimethylsiloxane) hydrophobic outer layer for skin healing and regeneration. Int J Mol Sci. 2022;23(9):5135. doi: 10.3390/ijms23095135