Publication Cover
Materials Technology
Advanced Performance Materials
Volume 38, 2023 - Issue 1
1,252
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Achieving excellent strength and ductility synergy by δ phase strengthening in low-density high-manganese steel

ORCID Icon, , &
Article: 2283991 | Received 02 Nov 2023, Accepted 11 Nov 2023, Published online: 27 Nov 2023

References

  • Jin J-E, Lee Y-K. Effects of al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Materialia. 2012;60(4):1680–21. doi: 10.1016/j.actamat.2011.12.004
  • Seol J-B, Jung J, Jang Y, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe–Mn–C steels. Acta Materialia. 2013;61(2):558–578. doi: 10.1016/j.actamat.2012.09.078
  • Tian Y, Bai Y, Zhao L, et al. A novel ultrafine-grained Fe 22Mn 0.6C TWIP steel with superior strength and ductility. Mater Charact. 2017;126:74–80. doi: 10.1016/j.matchar.2016.12.026
  • Ning H, Li X, Meng L, et al. Effect of Ni and Mo on microstructure and mechanical properties of grey cast iron. Mater Technol. 2023;38(1):2172991. doi: 10.1080/10667857.2023.2172991
  • Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-al-C light-weight TRIPLEX steels. Steel Res Int. 2006;77(9–10):627–633. doi: 10.1002/srin.200606440
  • Jo MC, Jo MC, Zargaran A, Sohn SS, Kim NJ, and Lee S. Effects of al addition on tensile properties of partially recrystallized austenitic TRIP/TWIP steels. Mater Sci Eng A. 2021;806:140823. doi: 10.1016/j.msea.2021.140823
  • Kang S, Jung Y-S, Jun J-H, et al. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe–18Mn–0.6C–1.5Al TWIP steel. Mater Sci Eng A. 2010;527(3):745–751. doi: 10.1016/j.msea.2009.08.048
  • Pierce DT, Benzing JT, Jiménez JA, et al. The influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Materialia. 2022;22:101425. doi: 10.1016/j.mtla.2022.101425
  • Kim J-K, Cooman BCD. Mater Sci Eng A. 2016;676:216–231. doi: 10.1016/j.msea.2016.08.106
  • Rana R, Liu C, Ray R. Low-density low-carbon Fe–al ferritic steels. Scripta Materialia. 2013;68(6):354–359. doi: 10.1016/j.scriptamat.2012.10.004
  • Frommeyer G, Drewes E, Engl B. Physical and mechanical properties of iron-aluminium-(Mn, si) lightweight steels. Rev Met Paris. 2000;97(10):1245–1253. doi: 10.1051/metal:2000110
  • Wang XJ, Sun XJ, Song C, et al. Enhancement of yield strength by chromium/nitrogen alloying in high-manganese cryogenic steel. Mater Sci Eng A. 2017;698:110–116. doi: 10.1016/j.msea.2017.05.023
  • Chen J, Ren J-K, Liu Z-Y, et al. The essential role of niobium in high manganese austenitic steel for application in liquefied natural gas tanks. Mater Sci Eng A. 2020;772:138733. doi: 10.1016/j.msea.2019.138733
  • Ren J-K, Mao D-S, Gao Y, et al. High carbon alloyed design of a hot-rolled high-Mn austenitic steel with excellent mechanical properties for cryogenic application. Mater Sci Eng A. 2021;827:141959. doi: 10.1016/j.msea.2021.141959
  • Zhao Y, Wang J, Zhou S, et al. Effects of rare earth addition on microstructure and mechanical properties of a Fe–15Mn–1.5Al–0.6C TWIP steel. Mater Sci Eng A. 2014;608:106–113. doi: 10.1016/j.msea.2014.04.084
  • Gwon H, Kim J-K, Jian B, et al. Partially-recrystallized, Nb-alloyed TWIP steels with a superior strength-ductility balance. Materials Science And Engineering: A. 2018;711:130–139. doi: 10.1016/j.msea.2017.11.012
  • Ren J-K, Chen Q-Y, Chen J, et al. Role of vanadium additions on tensile and cryogenic-temperature charpy impact properties in hot-rolled high-Mn austenitic steels. Mater Sci Eng A. 2021;811:141063. doi: 10.1016/j.msea.2021.141063
  • Li L, Liu J, Ding C, et al. Mater Lett. 2023:135382. doi: 10.1016/j.matlet.2023.134557
  • Li Y, Lu Y, Li W, et al. Hierarchical microstructure design of a bimodal grained twinning-induced plasticity steel with excellent cryogenic mechanical properties. Acta Materialia. 2018;158:79–94. doi: 10.1016/j.actamat.2018.06.019
  • Gao J, Jiang S, Zhang H, et al. Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature. 2021;590(7845):262–267. doi: 10.1038/s41586-021-03246-3
  • Yang M, Yuan F, Xie Q, et al. Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Materialia. 2016;109:213–222. doi: 10.1016/j.actamat.2016.02.044
  • Carrouge D, Bhadeshia H, Woollin P. Effect of δ -ferrite on impact properties of supermartensitic stainless steel heat affected zones. Sci Tec Weld Joining. 2004;9(5):377–389. doi: 10.1179/136217104225021823
  • Imandoust A, Zarei-Hanzaki A, Heshmati-Manesh S, et al. Effects of ferrite volume fraction on the tensile deformation characteristics of dual phase twinning induced plasticity steel. Mater Design. 2014;53:99–105. doi: 10.1016/j.matdes.2013.06.033
  • Chung FH. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr. 1974;7(6):526–531. doi: 10.1107/S0021889874010387
  • Bracke L, Verbeken K, Kestens L, et al. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Materialia. 2009;57(5):1512–1524. doi: 10.1016/j.actamat.2008.11.036
  • Jang M-H, Moon J, Lee T-H, et al. Effect of nitrogen partitioning on yield strength in nitrogen-alloyed duplex stainless steel during annealing. Metall Mater Trans A. 2014;45(4):1653–1658. doi: 10.1007/s11661-014-2210-8
  • Li Q, Zuo H, Feng J, et al. Strain rate and temperature sensitivity on the flow behaviour of a duplex stainless steel during hot deformation. Mater Technol. 2023;38(1):2166216. doi: 10.1080/10667857.2023.2166216
  • Kumar N, Goel S, Jayaganthan R, et al. Effect of grain boundary misorientaton, deformation temperature and AlFeMnSi-phase on fatigue life of 6082 al alloy. Mater Charact. 2017;124:229–240. doi: 10.1016/j.matchar.2017.01.002
  • Misra RDK, Challa V, Injeti V. Phase reversion-induced nanostructured austenitic alloys: an overview. Mater Technol. 2022;37(7):437–449. doi: 10.1080/10667857.2022.2065621
  • Niu G, Zurob HS, Misra RDK, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure. Acta Materialia. 2022;226:117642. doi: 10.1016/j.actamat.2022.117642
  • Kocks U. Kinetics of solution hardening. Metall Trans A. 1985;16(12):2109–2129. doi: 10.1007/BF02670415
  • Li K, Zhang Z, Yan J, et al. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals. J Mater Sci Technol. 2020;57:159–171. doi: 10.1016/j.jmst.2020.04.035
  • Guo L, Su X, Dai L, et al. Strain ageing embrittlement behaviour of X80 self-shielded flux-cored girth weld metal. Mater Technol. 2023;38(1):2164978. doi: 10.1080/10667857.2023.2164978
  • Misra RDK. Enabling manufacturing of multi-axial forging-induced ultrafine-grained strong and ductile magnesium alloys: a perspective of process-structure-property paradigm. Mater Technol. 2023;38(1):2189769. doi: 10.1080/10667857.2023.2189769
  • Misra RDK. Strong and ductile texture-free ultrafine-grained magnesium alloy via three-axial forging. Mater Lett. 2023;331:133443. doi: 10.1016/j.matlet.2022.133443
  • Wang L, Li J, Liu Z, et al. Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder. Mater Technol. 2023;38(1):2181680. doi: 10.1080/10667857.2023.2181680
  • Yang C, Xu H, Wang Y, et al. Hot tearing analysis and process optimisation of the fire face of al-cu alloy cylinder head based on MAGMA numerical simulation. Mater Technol. 2023;38(1):2165245. doi: 10.1080/10667857.2023.2165245
  • Wang W, Wang D, Han F. Study on the mechanical behavior of twinning-induced plasticity steel processed by warm forging and annealing. J Mater Sci. 2018;53(20):14645–14656. doi: 10.1007/s10853-018-2597-5
  • Li D, Meng F, Ma X. Molecular dynamics simulation of interaction between deformation twin and annealing twin in iron crystal. Mater Res Innovations. 2014;18(sup4):SS4–1011. doi: 10.1179/1432891714Z.000000000869
  • Tewary N, Ghosh S, Chatterjee S, et al. Deformation and annealing behaviour of dual phase TWIP steel from the perspective of residual stress, faults, microstructures and mechanical properties. Mater Sci Eng A. 2018;733:43–58. doi: 10.1016/j.msea.2018.07.027
  • Xu L, Wu H. Microstructural evolution and mechanical property optimization under solution treatment of an ultra-low carbon Fe-Mn-Al duplex steel. Mater Sci Eng A. 2018;738:163–173. doi: 10.1016/j.msea.2018.09.097
  • Cohen J, Weertman J. A dislocation model for twinning in f.c.c. metals. Acta Metall. 1963;11(8):996–998. doi: 10.1016/0001-6160(63)90074-9
  • Yang H, Tian Y, Zhang Z. Revealing the mechanical properties and microstructure evolutions of Fe–22Mn–0.6C–(x)Al TWIP steels via al alloying control. Mater Sci Eng A. 2018;731:61–70. doi: 10.1016/j.msea.2018.06.037
  • Kleemola H, Nieminen M. On the strain-hardening parameters of metals. Metall Trans. 1974;5(8):1863–1866. doi: 10.1007/BF02644152