Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
635
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular dynamics study on the dislocation evolution mechanism of temperature effect in nano indentation of FeCoCrCuNi high-entropy alloy

&
Article: 2299903 | Received 13 Nov 2023, Accepted 23 Dec 2023, Published online: 30 Dec 2023

References

  • Chen HH, Zhang XF, Liu C, et al. Research progress on impact deformation behavior of high-entropy alloys. Explosion And Shock Waves. 2021;41:041402. doi: 10.11883/bzycj-2020-0414
  • George EP, Curtin WA, Tasan CC. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Materialia. 2020;188:435–12. doi: 10.1016/j.actamat.2019.12.015
  • Li JG, Huang RR, Zhang Q, et al. Mechnical proerties and behaviors of high entropy alloys. Chinese J Theor Appl Mech. 2020;52:333–359. doi: 10.6052/0459-1879-20-009
  • Li J, Feng H, Chen Y, et al. Progress in theoretical modeling and simulation on strengthening and toughening of high-entropy alloys. Chinese J Solid Mech. 2020;41:93–108. doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.009
  • Lu ZP, Lei ZF, Huang HL, et al. Deformation behavior and toughening of high-entropy alloys. Acta Metall Sin. 2018;54:1553–1566. doi: 10.11900/0412.1961.2018.00372
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall Mater Trans A. 2018;49(3):772–781. doi: 10.1007/s11661017-4386-1
  • Xie XC, Li N, Liu W, et al. Research progress of refractory high-entropy alloys: a review. Chin J Mech Eng. 2022;35(1). doi: 10.1186/s10033-022-00814-0
  • Zhang ZR, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel highentropy alloy HfZrTiTa0.53. Mater Design. 2017;133:435–443. doi: 10.1016/j.matdes.2017.08.022
  • Zhang ZR. Microstructure and mechanical properties of Hf Zr Ti tax high-entropy alloys energetic structural materials. Changsha, Hunan, P.R.China: National University of Defense Technology; 2017.
  • Chen HH, Zhang XF, Xiong W, et al. Dynamic mechanical behavior and pentration performance of WFeNiMo high-entropy alloy. Chinese J Theor Appl Mech. 2020;52:1443–1453. doi: 10.6052/0459-1879-20-166
  • Liu Y, Chen M, Li YX, et al. Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys. Rare Metal Mat Eng. 2009;38:1602.
  • Li BY, Peng K, Hu AP, et al. Structure and properties of FeCoNiCrCu0. 5Alx high- entropy alloy. Trans Nonferrous Met Soc China. 2013;23:735. doi: 10.1016/S1003-6326(13)62523-6
  • Dong B, Wang XM, Zhu ZL. Study on the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void by molecular dynamics simulations. J Atomic Mol Phys. 2020;37:591–595.
  • Gong N, Meng TL, Cao J, et al. Laser-cladding of high entropy alloy coatings: an overview. Mater Technol. 2023;38(1). doi: 10.1080/10667857.2022.2151696
  • Feng L, Yang WJ, Ma K, et al. Microstructure and properties of cold spraying AlCoCrCuFeNix HEA coatings synthesized by induction remelting. Mater Technol. 2022;37:2567–2579. doi: 10.1080/10667857.2022.2046929
  • Maldonado AJ, Misra KP, Misra RDK. Grain boundary segregation in a high entropy alloy. Mater Technol. 2023;38. doi: 10.1080/10667857.2023.2221959
  • Tan SY, Liu XD, Wang ZZ. Nanoindentation mechanical properties of CoCrFeNi high entropy alloy films. Mater Technol. 2022;37:1097–1108. doi: 10.1080/10667857.2021.1921329
  • Xu L, Sun DQ, Ma JM, et al. Applications of depth‑sensing indentation on asphalt materials: a review. Constr Build Mater. 2020;268:121195. doi: 10.1016/j.conbuildmat.2020.121195
  • Fernandes JV, Antunes JM, Sakharova NA, et al. Young’s modulus of thin films using depth-sensing indentation. Philos Mag Lett. 2010;90(1):9–22. doi: 10.1080/09500830903334312
  • Simões MI, Antunes JM, Fernandes JV, et al. Numerical simulation of the depth-sensing Indentation test with Knoop Indenter. Metals - Open Access Metall J. 2018;8(11):885. doi: 10.3390/met8110885
  • Li Q, Jiang CL, Du Y. Molecular dynamics study on dynamic mechanical behaviour of FeCoCrCuNi high entropy alloy. Mater Technol. 2023;38. doi: 10.1080/10667857.2023.2200660
  • Ruestes CJ, Alhafez IA, Urbassek HM. Atomistic studies of nanoindentation—a review of recent advances. Crystals. 2017;7(10):293. doi: 10.3390/cryst7100293
  • Alhafez IA, Ruestes CJ, Bringa EM, et al. Indentation and scratching of iron by a rotating tool – a molecular dynamics study. Comput Mater Sci. 194. doi: 10.1016/j.commatsci.2021.110445
  • Li J, Fang QH, Liu B, et al. The effects of pore and second-phase particle on the mechanical properties of machining copper matrix from molecular dynamic simulation. Appl Surface Sci. 2016;384:419–431. doi: 10.1016/j.apsusc.2016.05.051
  • Wang ZN, Li J, Fang QH, et al. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl Surface Sci. 2017;416:470–481. doi: 10.1016/j.apsusc.2017.04.009
  • Huang JC, Sheer TJ, Bailey-McEwan M. Heat transfer and pressure drop in plate heat exchanger refrigerant evaporators. Int J Refrig. 2012;35(2):325–335. doi: 10.1016/j.ijrefrig.2011.11.002
  • Alhafez IA, Ruestes CJ, Bringa EM, et al. Nanoindentation into a high-entropy alloy-an atomistic study. J Alloys Compd. 2019;803:618–624. doi: 10.1016/j.jallcom.2019.06.277
  • Mu AR, Han Y, Song XJ, et al. Nanoindentation into feconicrcu high-entropy alloy: an atomistic study. Mater Sci Technol. 2021;37:202–209. doi: 10.1080/02670836.2021.1885095
  • Tian YY, Fang QH, Li J. Molecular dynamics simulations for nanoindentation response of nanotwinned FeNiCrCoCu high entropy alloy. Nanotechnology. 2020;31:465701. doi: 10.1088/1361-6528/ababcd
  • Feng H, Tang JW, Chen HT, et al. Indentation-induced plastic behaviour of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminate: an atomic simulation. RSC Adv. 2020;10(16):9187–9192. doi: 10.1039/D0RA00518E
  • Zhang HT, Siu KW, Liao WB, et al. In situ mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Mater Res Express. 2016;3(9):094002. doi: 10.1088/2053-1591/3/9/094002
  • Farkas D, Caro A. Model interatomic potentials and lattice strain in a high- entropy alloy. J Mater Res. 2018;33(19):3218–3225. doi: 10.1557/jmr.2018.245
  • Li J, Guo XX, Ma SG, et al. Mechanical properties of AlCrFeCuNi high entropy alloy: a molecular dynamics study. Chinese J High Press Phys. 2020;34:37–45. doi: 10.11858/gywlxb.20190762
  • Pi JH, Pan Y, Zhang H, et al. Microstructure and properties of microstructure and properties of AlCrFeCuNix (0.6≤x≤1.4) high-entropy alloys. Mater Sci Eng A. 2012;534:228–233. doi: 10.1016/j.msea.2011.11.063
  • Fang QH, Yi M, Li J, et al. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Appl Surface Sci. 2018;443:122–130. doi: 10.1016/j.apsusc.2018.02.245
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling Simul Mater Sci Eng. 2010;18(1):15012. doi: 10.1088/0965-0393/18/1/015012
  • Lin CM, Tsai HL. Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature. J Alloys Compd. 2010;489:30–35. doi: 10.1016/j.jallcom.2009.09.041
  • Samaei AT, Mirsayar MM, Aliha MRM. The microstructure and mechanical behavior of modern high temperature alloys. Eng Solid Mech. 2015;3(1):1–20. doi: 10.5267/j.esm.2015.1.001
  • Chen CX. Deformation mechanism of high-entropy alloys. Hangzhou: Zhejiang University; 6 2018.
  • Zhang ZJ, Mao MM, Wang JW, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6(1):10143. doi: 10.1038/ncomms10143