Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
314
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Melothria maderaspatana mediated one-pot synthesis of cerium-doped Silymarin nanoparticles and their antibacterial and anticancer studies

, , , , , & ORCID Icon show all
Article: 2315381 | Received 04 Nov 2023, Accepted 02 Feb 2024, Published online: 06 Mar 2024

References

  • Devi GK, Sathishkumar K. Synthesis of gold and silver nanoparticles using plant extract and its anticancer activity. IET Nanobiotechnol. 2017;11(2):143–9. doi: 10.1049/iet-nbt.2015.0054
  • Raja B, Pugalendi K. Evaluation of antioxidant activity of Melothria maderaspatana in vitro. Open Life Sci. 2010;5(2):224–230. doi: 10.2478/s11535-010-0005-5
  • Balaraman AK, Singh J, Dash S, et al. Antihyperglycemic and hypolipidemic effects of melothria maderaspatana and coccinia indica in Streptozotocin induced diabetes in rats. Saudi Pharm J. 2010;18(3):173–178. doi: 10.1016/j.jsps.2010.05.009
  • Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, et al. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022;16(4):115–144.
  • Veeramani C, Aristatile B, Pushpavalli G, et al. Effects of Melothria maderaspatana leaf extract on antioxidant status in sham-operated and uninephrectomized DOCA-salt hypertensive rats. Saudi J Biol Sci. 2011;18(1):99–105. doi: 10.1016/j.sjbs.2010.05.002
  • Devi GK, Kumar KS, Parthiban R, et al. An insight study on HPTLC fingerprinting of mukia maderaspatna: mechanism of bioactive constituents in metal nanoparticle synthesis and its activity against human pathogens. Microb Pathog. 2017;102:120–132. doi: 10.1016/j.micpath.2016.11.026
  • Koltai T, Fliegel L. Role of silymarin in cancer treatment: facts, hypotheses, and questions. J Evid Based Integr Med. 2022;27:2515690X211068826. doi: 10.1177/2515690X211068826
  • Hölzl J. Biosynthesis and (14C) labelling of flavonolignans (silymarin) by Silybum marianum (Haller) (author’s transl). Z Naturforsch C. 1974;29(1):82–83. https://www.ncbi.nlm.nih.gov/pubmed/4276432
  • Rekha K, Nirmala M, Nair MG, et al. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B Condens Matter. 2010;405(15):3180–3185. doi: 10.1016/j.physb.2010.04.042
  • Shenoy RUK, Rama A, Govindan I, et al. The purview of doped nanoparticles: insights into their biomedical applications. OpenNano. 2022;8(100070):100070. doi: 10.1016/j.onano.2022.100070
  • Elderdery AY, Alzahrani B, Alabdulsalam AA, et al. Structural, optical, antibacterial, and anticancer properties of cerium oxide nanoparticles prepared by green synthesis using leaves extract. Bioinorg Chem Appl. 2022;2022:6835625. doi: 10.1155/2022/6835625
  • Muthuvel A, Jothibas M, Mohana V. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg Chem Commun. 2020;119:108086. doi: 10.1016/j.inoche.2020.108086
  • Kweyama Z. Green synthesis of europium (III) oxide nanoparticles using hibiscus sabdariffa flower extract. 2018. https://books.google.com/books/about/Green_Synthesis_of_Europium_III_Oxide_Na.html?hl=&id=ZpTrvgEACAAJ
  • Altaf M, Manoharadas S, Zeyad MT. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc Res Tech. 2021;84(8):1638–1648. doi: 10.1002/jemt.23724
  • Arumugam A, Karthikeyan C, Haja Hameed AS, et al. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2015;49:408–415. doi: 10.1016/j.msec.2015.01.042
  • Senthilkumar RP, Bhuvaneshwari V, Ranjithkumar R, et al. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: as a bionanomaterials. Int j biol macromol. 2017;104(Pt B):1746–1752. doi: 10.1016/j.ijbiomac.2017.03.139
  • Sabouri Z, Sabouri M, Amiri MS, et al. Plant-based synthesis of cerium oxide nanoparticles using rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Technol. Published online July 3, 2022;37(8):555–568. doi: 10.1080/10667857.2020.1863573
  • Zhang M, Zhang C, Zhai X, et al. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater. 2019;62(11):1727–1739. doi: 10.1007/s40843-019-9471-7
  • Rana SB, Singh RPP. Investigation of structural, optical, magnetic properties and antibacterial activity of Ni-doped zinc oxide nanoparticles. J Mater Sci Mater Electron. 2016;27(9):9346–9355. doi: 10.1007/s10854-016-4975-6
  • Theuretzbacher U. Surface chemistry of cerium oxide nanocubes: toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem. 2014;20(5):3513–3517. doi: 10.1016/j.jiec.2013.12.043
  • Abbasi N, Homayouni Tabrizi M, Ardalan T, et al. Cerium oxide nanoparticles-loaded on chitosan for the investigation of anticancer properties. Mater Technol. 2022;37(10):1439–1449. doi: 10.1080/10667857.2021.1954279