Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
265
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tailoring porosity of starch-derived biocarbon for enhanced supercapacitor performance

, , , & ORCID Icon
Article: 2338628 | Received 22 Feb 2024, Accepted 30 Mar 2024, Published online: 05 Apr 2024

References

  • Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nat Mater. 2020;19(11):1151–8. doi: 10.1038/s41563-020-0747-z
  • Bazan-Aguilar A, Ponce-Vargas M, Caycho CL, et al. Highly porous reduced graphene oxide-coated carbonized cotton fibers as supercapacitor electrodes. ACS Omega. 2020;5(50):32149–32159. doi: 10.1021/acsomega.0c02370
  • De Silva T, Damery C, Alkhaldi R, et al. Carbon nanotube based robust and flexible solid-state supercapacitor. ACS Appl Mater Interfaces. 2021;13(47):56004–56013. doi: 10.1021/acsami.1c12551
  • Merin P, Jimmy Joy P, Muralidharan MN, et al. Biomass-derived activated carbon for high-performance supercapacitor electrode applications. Chem Eng Technol. 2021;44(5):844–851. doi: 10.1002/ceat.202000450
  • Purkait T, Singh G, Singh M, et al. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep. 2017;7(1):15239. doi: 10.1038/s41598-017-15463-w
  • Redondo E, Carretero-González J, Goikolea E, et al. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta. 2015;160:178–184. doi: 10.1016/j.electacta.2015.02.006
  • Marcilla A, García-García S, Asensio M, et al. Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells. Carbon. 2000;38(3):429–440. doi: 10.1016/S0008-6223(99)00123-2
  • Unknown S, Chand P, Joshi A. Biomass derived carbon for supercapacitor applications: review. J Energy Storage. 2021;39(April):102646. doi: 10.1016/j.est.2021.102646
  • Zhang Y, Yu S, Lou G, et al. Review of macroporous materials as electrochemical supercapacitor electrodes. J Mater Sci. 2017;52(19):11201–11228. doi: 10.1007/s10853-017-0955-3
  • Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production-A review. Renewable Sustainable Energy Rev. 2007;11(9):1966–2005. doi: 10.1016/j.rser.2006.03.013
  • Yao C, Shin Y, Wang L, et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C. 2007;111(42):15141–15145. doi: 10.1021/jp074188l
  • Zhang M, Yang H, Liu Y, et al. First identification of primary nanoparticles in the aggregation of HMF. Nanoscale Res Lett. 2012;7(1):38. doi: 10.1186/1556-276X-7-38
  • Il Kim Y, Lee YJ, Yoo J, et al. High-capacitance activated bio-carbons with controlled pore size distribution for sustainable energy storage. J Power Sources. 2019;438(August):226969. doi: 10.1016/j.jpowsour.2019.226969
  • Otowa T, Tanibata R, Itoh M. Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif. 1993;7(4):241–245. doi: 10.1016/0950-4214(93)80024-Q
  • Muniandy L, Adam F, Mohamed AR, et al. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Micropor Mesopor Mater. 2014;197:316–323. doi: 10.1016/j.micromeso.2014.06.020
  • Yun CH, Park YH, Park CR. Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon N Y. 2001;39(4):559–567. doi: 10.1016/S0008-6223(00)00163-9
  • Yb T, Liu Q, Fy C. Preparation and characterization of activated carbon from waste ramulus mori. Chem Eng J. 2012;203:19–24. doi: 10.1016/j.cej.2012.07.007
  • Zhang G, Chen Y, Chen Y, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater Res Bull. 2018;102(June):391–398. 2017. doi: 10.1016/j.materresbull.2018.03.006
  • Oh YJ, Yoo JJ, Kim YI, et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta. 2014;116:118–128. doi: 10.1016/j.electacta.2013.11.040
  • Zhang F, Xiao X, Gandla D, et al. Bio-derived carbon with tailored hierarchical pore structures and ultra-high specific surface area for superior and advanced supercapacitors. Nanomaterials (Basel). 2021;12(1):27. doi: 10.3390/nano12010027
  • Phiri J, Dou J, Vuorinen T, et al. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega. 2019;4(19):18108–18117. doi: 10.1021/acsomega.9b01977
  • Taberna PL, Simon P, Fauvarque JF. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc. 2003;150(3):A292. doi: 10.1149/1.1543948
  • Sahoo MK, Rao GR. A high energy flexible symmetric supercapacitor fabricated using N-doped activated carbon derived from palm flowers. Nanoscale Adv. 2021;3(18):5417–5429. doi: 10.1039/D1NA00261A
  • Zou Z, Liu T, Jiang C. Highly mesoporous carbon flakes derived from a tubular biomass for high power electrochemical energy storage in organic electrolyte. Mater Chem Phys. 2018;223:16–23. doi: 10.1016/j.matchemphys.2018.10.036
  • Fahim M, Shah A, Bilal S. Highly stable and efficient performance of binder-free symmetric supercapacitor fabricated with electroactive polymer synthesized via interfacial polymerization. Materials. 2019;12(10):1626. doi: 10.3390/ma12101626
  • Wang H, Li Z, Tak JK, et al. Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon. 2013;57(Y):317–328. doi: 10.1016/j.carbon.2013.01.079
  • Tang Y, Lu Y, Zang X, et al. Tailored properties of carbon for supercapacitors by blending lignin and cellulose to mimic biomass as carbonaceous precursor. ChemSuschem. 2023;16(17):1–9. doi: 10.1002/cssc.202300357
  • Apparla N, Manickavasakam K, Sharma CS. Augmenting the supercapacitive performance of candle soot-derived activated carbon electrodes in aqueous and non-aqueous electrolytes. J Energy Storage. 2023;73(PD):109162. doi: 10.1016/j.est.2023.109162