26
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Ceruloplasmin enhances DNA damage induced by hydrogen peroxide in vitro

, &
Pages 81-89 | Received 27 Sep 1999, Published online: 07 Jul 2009

References

  • Ryden L., Bjork I. Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase). Biochemistry 1976; 15: 3411–3417
  • Orena S.J., Goode C.A., Linder M.C. Binding and uptake of copper from ceruloplasmin. Biochemical and Biophysical Research Communications 1986; 139: 822–829
  • Takahashi N., Ortel T.L., Putnum F.W. Single-chain structure of human ceruloplasmin: The complete amino acid sequence of the whole molecule. Proceedings of the National Academy of Sciences of the United States of America 1984; 81: 390–394
  • Goldstein I.M., Kaplan H.B., Edelson H.S., Weissmann G. Ceruloplasmin. A scavenger of superoxide anion radicals. Journal of Biological Chemistry 1979; 254: 4040–4045
  • Yamashoji S., Kajimoto G. Antioxidant effect of caeruloplasmin on microsomal lipid peroxidation. Federation of European Biological Society Letters 1983; 152: 168–170
  • Samokyszyn V.M., Miller D.M., Reif D.W., Aust S.D. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. Journal of Biological Chemistry 1989; 264: 21–26
  • Kim I.G., Park S.Y., Kim K.C., Yum J.J. Thiollinked peroxidase activity of human ceruloplasmin. Federation of European Biological Society Letters 1998; 431: 473–475
  • Ehrenwald E., Chisolm G.M., Fox P.L. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. Journal of Clinical Investigation 1994; 93: 1493–4501
  • Mukhopadhyay C.K., Ehrenwald E., Fox P.L. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism. Journal of Biological Chemistry 1996; 271: 14773–14778
  • Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiological Review 1979; 59: 527–605
  • Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal 1984; 219: 1–14
  • Steinberg D. Role of oxidized LDL and antioxidants in atherosclerosis. Advances in Experimental and Medical Biology 1995; 369: 39–48
  • Jimenez I., Gotteland M., Zarzuelo A., Uauy R., Speisky H. Loss of the metal binding properties of metallothionein induced by hydrogen peroxide and free radicals. Toxicology 1997; 120: 37–46
  • Fabisiak J.P., Tyurin V.A., Tyurina Y.Y., Borisenko G.G., Korotaeva A., Pitt B.R., Lazo J.S., Kagan V.E. Redox regulation of copper-metallothionein. Archives of Biochemistry and Biophysics 1999; 363: 171–181
  • Wiedau-Pazos M., Goto J.J., Rabizadeh S., Gralla E.B., Roe J.A., Lee M.K., Valentine J.S., Bredesen D.E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 1996; 271: 515–518
  • Siddique T., Deng H.X. Genetics of amyotrophic lateral sclerosis. Human Molecular Genetics 1996; 5: 1465–1470
  • Yim M.B., Kang J.H., Yim H.S., Kwak H.S., Chock P.B., Stadtman E.R. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 5709–5714
  • Ookawara T., Kawamura N., Kitagawa Y., Taniguchi N. Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. Journal of Biological Chemistry 1992; 267: 18505–18510
  • Islam K.N., Takahashi M., Higashiyama S., Myint T., Uozumi N., Kayanoki Y., Kaneto H., Kosaka H., Taniguchi N. Fragmentation of ceruloplasmin following non-enzymatic glycation reaction. Journal of Biochemistry 1995; 118: 1054–1060
  • Multhaup G., Schlicksupp A., Hesse L., Beher D., Rupper T., Masters C.L., Beyreuther K. The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper. Science 1996; 271: 1406–1409
  • Park J.-W., Floyd R.A. Lipid peroxidation products mediate the formation of 8-hydroxydeoxy-guanosine in DNA. Free Radical Biology and Medicine 1992; 12: 245–250
  • Schosinsky K.H., Lehmann H.P., Beeler M.F. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clinical Chemistry 1974; 20: 1556–1563
  • Winyard P.G., Hider R.C., Brailsford S., Drake A.F., Lunec J., Blake D.R. Effects of oxidative stress on some physiochemical properties of caeruloplasmin. Biochemical Journal 1989; 258: 435–445
  • Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 1990; 186: 464–478
  • Jewett S.J., Cushing S., Gillespie F., Smith D., Sparks S. Reaction of bovine-liver copper-zinc superoxide dismutase with hydrogen peroxide. Evidence for reaction with H2O2 and HO-2 leading to loss of copper. European Journal of Biochemistry 1989; 180: 569–575
  • Church F.C., Porter D.H., Catignani G.L., Swaisgood H.E. An o-phthalaldehyde spectrophotometric assay for proteinases. Analytical Biochemistry 1985; 146: 343–348
  • Eftink M.R., Ghiron C.A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry 1976; 15: 672–680
  • Lehrer S.S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 1971; 10: 3254–3262
  • Amici A., Levine R.L., Tsai L., Stadtman E.R. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. Journal of Biological Chemistry 1989; 264: 3341–3346
  • Stadtman E.R. Protein oxidation and aging. Science 1992; 257: 1220–1224
  • Aruoma O.I., Halliwell B., Gajewski E., Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochemical Journal 1991; 273: 601–604
  • Park J.-W., Floyd R.A. Generation of strand breaks and formation of 8-hydroxy-2′-deoxyguanosine in DNA by a thiol/Fe3+/O2-catalyzed oxidation system. Archives of Biochemistry and Biophysics 1994; 312: 285–291
  • Sato K., Akaike T., Kohno M., Ando M., Maeda H. Hydroxyl radical production by H2O2 plus Cu,Zn-superoxide dismutase reflects the activity of free copper released from the oxidatively damaged enzyme. Journal of Biological Chemistry 1992; 267: 25371–25377
  • Park J.-W., Floyd R.A. Glutathione/Fe3+/O2-mediated DNA strand breaks and 8-hydroxydeoxy-guanosine formation. Enhancement by copper, zinc superoxide dismutase. Biochimica et Biophysica Acta 1997; 1336: 263–268
  • Kaneto H., Fujii J., Suzuki K., Kasai H., Kawamori R., Kamada T., Taniguchi N. DNA cleavage induced by glycation of Cu,Zn-superoxide dismutase. Biochemical Journal 1994; 304: 219–225
  • Musci G., Bonaccorsi di Patti M.C., Fagiolo U., Calabrese L. Age-related changes in human ceruloplasmin: Evidence for oxidative modifications. Journal of Biological Chemistry 1993; 268: 13388–13395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.