39
Views
10
CrossRef citations to date
0
Altmetric
Review Article

The role of nitric oxide in the regulation of ion channels in airway epithelium: Implications for diseases of the lung

&
Pages 449-459 | Received 29 Feb 2000, Published online: 07 Jul 2009

References

  • Widdicombe J.H., Widdicombe J.G. Regulation of human airway surface liquid. Respiration Physiology 1995; 99: 3–12
  • Wine J.J. The genesis of cystic fibrosis lung disease. Journal of Clinical Investigation 1999; 103: 309–312
  • Boucher R.C. Human airway ion transport. American Journal of Respiratory and Critical Care Medicine 1994; 150: 271–281
  • Lundberg J.O., Weitzberg E. Nasal nitric oxide in man. Thorax 1999; 54: 947–952
  • Pietropaoli A.P., Perillo I.B., Torres A., Perkins P.T., Frasier L.M., Utell M.J., Frampton M.W., Hyde R.W. Simultaneous measurement of nitric oxide production by conducting and alveolar airways of humans. Journal of Applied Physiology 1999; 87: 1532–1542
  • Moncada S., Higgs E.A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB Journal 1995; 9: 1319–1330
  • Watkins D.N., Peroni D.J., Basclain K.A., Garlepp M.J., Thompson P.J. Expression and activity of nitric oxide synthases in human airway epithelium. American Journal of Respiratory Cell and Molecular Biology 1997; 16: 629–639
  • Runer T., Cervin A., Lindberg S., Uddman R. Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol. Head. Neck Surg. 1998; 119: 278–287
  • Squadrito G.L., Pryor W.A. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radical Biology and Medicine 1998; 25: 392–403
  • McCafferty D.M., Mudgett J.S., Swain M.G., Kubes P. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology 1997; 112: 1022–1027
  • Meng Q.H., Polak J.M., Edgar A.J., Chacon M.R., Evans T.J., Gruenert D.C., Bishop A.E. Neutrophils enhance expression of inducible nitric oxide synthase in human normal but not cystic fibrosis bronchial epithelial cells. Journal of Pathology 2000; 190: 126–132
  • Kamosinska B., Radomski M.W., Duszyk M., Radomski A., Man S.F. Nitric oxide activates chloride currents in human lung epithelial cells. American Journal of Physiology: Lung Cellular and Molecular Physiology 1997; 272: L1098–L1104
  • Frings S. Cyclic nucleotide-gated channels and calcium — An intimate relation. Advances in Second Messenger and Phosphoprotein Research 1997; 31: 75–82
  • Satake N., Shibata M., Shibata S. The involvement of KCa, KATP and KV channels in vasorelaxing responses to acetylcholine in rat aortic rings. General Pharmacology 1997; 28: 453–457
  • Guo Y., DuVall M.D., Crow J.P., Matalon S. Nitric oxide inhibits Na+ absorption across cultured alveolar type II monolayers. American Journal of Physiology: Lung Cellular and Molecular Physiology 1998; 274: L369–L377
  • Jain L., Chen X.J., Brown L.A., Eaton D.C. Nitric oxide inhibits lung sodium transport through a cGMP-mediated inhibition of epithelial cation channels. American Journal of Physiology: Lung Cellular and Molecular Physiology 1998; 274: L475–L484
  • Ding J.W., Dickie J., O'Brodovich H., Shintani Y., Rafii B., Hackam D., Marunaka Y., Rotstein O.D. Inhibition of amiloride-sensitive sodium-channel activity in distal lung epithelial cells by nitric oxide. American Journal of Physiology: Lung Cellular and Molecular Physiology 1998; 274: L378–L387
  • Guzman N.J., Fang M.Z., Tang S.S., Ingelfinger J.R., Garg L.C. Autocrine inhibition of Na+/K(+)-ATPase by nitric oxide in mouse proximal tubule epithelial cells. Journal of Clinical Investigation 1995; 95: 2083–2088
  • Roczniak A., Burns K.D. Nitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule. American Journal of Physiology: Renal Physiology 1996; 270: F106–F115
  • Zech J.C., Pouvreau I., Cotinet A., Goureau O., Le Varlet B., De Kozak Y. Effect of cytokines and nitric oxide on tight junctions in cultured rat retinal pigment epithelium. Investigative ophthalmology & visual science 1998; 39: 1600–1608
  • Romero M.F., Boron W.F. Electrogenic Na+/HCO3- cotransporters: cloning and physiology. Annual Review of Physiology 1999; 61: 699–723
  • Devor D.C., Singh A.K., Lambert L.C., DeLuca A., Frizzell R.A., Bridges R.J. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. Journal of General Physiology 1999; 113: 743–760
  • Schultz B.D., Singh A.K., Devor D.C., Bridges R.J. Pharmacology of CFTR chloride channel activity. Physiological Reviews 1999; 79: S109–S144
  • Elmer H.L., Brady K.G., Drumm M.L., Kelley T.J. Nitric oxide-mediated regulation of transepithelial sodium and chloride transport in murine nasal epithelium. American Journal of Physiology: Lung Cellular and Molecular Physiology 1999; 276: L466–L473
  • Stamler J.S., Singel D.J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258: 1898–1902
  • Vaandrager A.B., Tilly B.C., Smolenski A., Schneider-Rasp S., Bot A.M., Edixhoven M., Scholte B.J., Jarchau T., Walter U., Lohmann S.M., Poller W.C., De Jonge H.R. cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Iβ. Journal of Biological Chemistry 1997; 272: 4195–4200
  • Berger H.A., Travis S.M., Welsh M.J. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. Journal of Biological Chemistry 1993; 268: 2037–2047
  • Kunzelmann K., Schreiber R. CFTR, a regulator of channels. Journal of Membrane Biology 1999; 168: 1–8
  • Carre D.A., Civan M.M. cGMP modulates transport across the ciliary epithelium. Journal of Membrane Biology 1995; 146: 293–305
  • Schmidt H.H., Lohmann S.M., Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochimica et Biophysica Acta 1993; 1178: 153–175
  • Kelley T.J., Al-Nakkash L., Drumm M.L. CFTR-mediated chloride permeability is regulated by type III phosphodiesterases in airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 1995; 13: 657–664
  • Kelley T.J., Cotton C.U., Drumm M.L. In vivo activation of CFTR-dependent chloride transport in murine airway epithelium by CNP. American Journal of Physiology: Lung Cellular and Molecular Physiology 1997; 273: L1065–L1072
  • Forte L.R., Thorne P.K., Eber S.L., Krause W.J., Freeman R.H., Francis S.H., Corbin J.D. Stimulation of intestinal Cl- transport by heat-stable enterotoxin: Activation of cAMP-dependent protein kinase by cGMP. American Journal of Physiology: Cell Physiology 1992; 263: C607–C615
  • Hsu Y.-T., Molday R.S. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 1993; 361: 76–79
  • Schwiebert E.M., Potter E.D., Hwang T.H., Woo J.S., Ding C.L., Qiu W.P., Guggino W.B., Levine M.A., Guggino S.E. cGMP stimulates sodium and chloride currents in rat tracheal airway epithelia. American Journal of Physiology: Cell Physiology 1997; 272: C911–C922
  • Clementi E., Meldolesi J. The cross-talk between nitric oxide and Ca2+: A story with a complex past and a promising future. Trends in Pharmacological Sciences 1997; 18: 266–269
  • Lee H.C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiological Reviews 1997; 77: 1133–1164
  • Bolotina V.M., Najibi S., Palacino J.J., Pagano P.J., Cohen R.A. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994; 368: 850–853
  • Campbell D.L., Stamler J.S., Strauss H.C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. Journal of General Physiology 1996; 108: 277–293
  • Weisbrod R.M., Griswold M.C., Yaghoubi M., Komalavilas P., Lincoln T.M., Cohen R.A. Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide. British Journal of Pharmacology 1998; 125: 1695–1707
  • Beckman J.S., Koppenol W.H. Nitric oxide, superoxide and peroxynitrite: the good, the bad and the ugly. American Journal of Physiology: Cell Physiology 1996; 271: C1424–C1437
  • DuVall M.D., Zhu S., Fuller C.M., Matalon S. Peroxynitrite inhibits amiloride-sensitive Na+currents in Xenopus oocytes expressing αβgamma-rENaC. American Journal of Physiology: Cell Physiology 1998; 274: C1417–C1423
  • Lu M., Wang W.H. Reaction of nitric oxide with superoxide inhibits basolateral K+ channels in the rat CCD. American Journal of Physiology: Cell Physiology 1998; 275: C309–C316
  • Maria S.S., Lee J., Groves J.T. Peroxynitrite rapidly permeates phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America 1997; 94: 14243–14248
  • Elliott S.J. Peroxynitrite modulates receptor-activated Ca2+ signaling in vascular endothelial cells. American Journal of Physiology: Lung Cellular and Molecular Physiology 1996; 270: L954–L961
  • Matalon S., O'Brodovich H. Sodium channels in alveolar epithelial cells: Molecular characterization, biophysical properties, and physiological significance. Annual Review of Physiology 1999; 61: 627–661
  • Gupta S., Moreland R.B., Munarriz R., Daley J., Goldstein I., Saenz d.T., I. Possible role of Na(+)K(+)-ATPase in the regulation of human corpus cavernosum smooth muscle contractility by nitric oxide. British Journal of Pharmacology 1995; 116: 2201–2206
  • Cheung P.Y., Salas E., Etches P.C., Phillipos E., Schulz R., Radomski M.W. Inhaled nitric oxide and inhibition of platelet aggregation in critically ill neonates. Lancet 1998; 351: 1181–1182
  • Guidot D.M., Hybertson B.M., Kitlowski R.P., Repine J.E. Inhaled NO prevents IL-1-induced neutrophil accumulation and associated acute edema in isolated rat lungs. American Journal of Physiology: Lung Cellular and Molecular Physiology 1996; 271: L225–L229
  • Scherrer U., Vollenweider L., Delabays A., Savcic M., Eichenberger U., Kleger G.R., Fikrle A., Ballmer P.E., Nicod P., Bartsch P. Inhaled nitric oxide for high-altitude pulmonary edema. New England Journal of Medicine 1996; 334: 624–629
  • Kelley T.J., Al-Nakkash L., Drumm M.L. C-type natriuretic peptide increases chloride permeability in normal and cystic fibrosis airway cells. American Journal of Respiratory Cell and Molecular Biology 1997; 16: 464–470
  • Guo F.H., De R.H., Rice T.W., Stuehr D.J., Thunnissen F.B., Erzurum S.C. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 7809–7813
  • Kelley T.J., Drumm M.L. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. Journal of Clinical Investigation 1998; 102: 1200–1207
  • Balfour-Lynn I.M., Laverty A., Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Archives of Disease in Childhood 1996; 75: 319–322
  • Steagall W.K., Elmer H.L., Brady K.G., Kelley T.J. Cystic Fibrosis Transmembrane Conductance Regulator-Dependent Regulation of Epithelial Inducible Nitric Oxide Synthase Expression. American Journal of Respiratory Cell and Molecular Biology 2000; 22: 45–50
  • Stutts M.J., Gabriel S.E., Price E.M., Sarkadi B., Olsen J.C., Boucher R.C. Pyridine nucleotide redox potential modulates cystic fibrosis transmembrane conductance regulator Cl- conductance. Journal of Biological Chemistry 1994; 269: 8667–8674
  • Cotten J.F., Welsh M.J. Covalent modification of the regulatory domain irreversibly stimulates cystic fibrosis transmembrane conductance regulator. Journal of Biological Chemistry 1997; 272: 25617–25622
  • Darley-Usmar V.M., McAndrew J., Patel R., Moellering D., Lincoln T.M., Jo H., Cornwell T., Digerness S., White C.R. Nitric oxide, free radicals and cell signaling in cardiovascular disease. Biochemical Society Transactions 1997; 25: 925–929
  • Hille B. Ionic channels of excitable membranes. Sinauer Associates Inc., Sunderland, Mass. 1992
  • Aizman R., Brismar H., Celsi G. Nitric oxide inhibits potassium transport in the rat distal colon. American Journal of Physiology: Gastrointestinal and Liver Physiology 1999; 276: G146–G154
  • Fukao M., Mason H.S., Britton F.C., Kenyon J.L., Horowitz B., Keef K.D. Cyclic GMP-dependent protein kinase activates cloned BKCa channels expressed in mammalian cells by direct phosphorylation at serine 1072. Journal of Biological Chemistry 1999; 274: 10927–10935

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.