123
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions

, , &
Pages 567-579 | Received 22 Dec 1999, Published online: 07 Jul 2009

References

  • Walling C. Fenton's reagent revisited. Accounts of Chemical Research 1975; 8: 125–131
  • Cohen G., Sinet P.M. Fenton's reagent — once more revisited. Chemical and Biochemical Aspects of O2- and SOD, J.V. Bannister, H.A.O. Hill. Elsevier/North-Holland, New York 1980; 27–37, In
  • Goldstein S., Meyerstein D., Czapski G. The Fenton Reagents. Free Radical Biology and Medicine 1993; 15: 435–445
  • Koppenol W.H. The Centennial of the Fenton Reaction. Free Radical Biology and Medicine 1993; 15: 645–651
  • Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters 1995; 82: 969–974
  • Wardman P., Candeias L.P. Fenton chemistry: An introduction. Radiation Research 1996; 145: 523–531
  • Gutteridge J.M.C. Free radicals in disease processes — A compilation of cause and consequence. Free Radical Research Communications 1993; 19: 141–158
  • Youngman R.J., Elstner E.F. Oxygen species in paraquat toxicity: the crypto-OH radical. FEBS-Letters 1981; 129: 265–268
  • Bielski B.H.J. Studies on hypervalent iron. Free Radical Research Communications 1991; 12–13: 469–477
  • Melton J.D., Bielski B.H.J. Studies of the kinetic, spectral and chemical properties of Fe(IV) pyrophosphate by pulse radiolysis. Radiation Physics and Chemistry 1990; 36: 725–733
  • Bielski B.H.J. Reactivity of hypervalent iron with biological compounds. Annals of Neurology 1992; 32: 28–32
  • Bielski B.H.J. Generation of iron(IV) and iron(V) complexes in aqueous solutions. Methods in Enzymology 1990; 186: 108–112
  • Dorovska-Taran V., Posthumus M.A., Boeren S., Boersma M.G., Teunis C.J., Rietjens I.M.C.M., Veeger G. Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalyzed by microperoxidase-8. European Journal of Biochemistry 1998; 253: 659–668
  • Dawson J.H. Probing structure function relations in heme-containing oxygenases and peroxidases. Science 1988; 240: 433–439
  • Reinke L.A., Rau J.M., McCay P.B. Characteristics of an oxidant formed during iron (II) autoxidation. Free Radical Biology and Medicine 1994; 16: 485–492
  • Manevich Y., Held K.D., Biaglow J.E. Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiation Research 1997; 148: 580–591
  • Kachur A.V., Tuttle S.W., Biaglow J.E. Autoxidation of ferrous ion complexes: A method for the generation. Radiation Research 1998; 150: 475–482
  • Saran M., Vetter G., Erben-Russ M., Winter R., Kruse A., Michel C., Bors W. Pulse radiolysis equipment: a setup for simultaneous multiwavelength kinetic spectroscopy. Reviews of Scientific Instruments 1987; 58: 363–368
  • Matthews R.W. The radiation chemistry of the terephthalate dosimeter. Radiation Research 1980; 83: 27–41
  • Fang X.W., Mark G., von Sonntag C. OH radical formation by ultrasound in aqueous solutions. 1. The chemistry underlying the terephthalate dosimeter. Ultrasonincs and Sonochemistry 1996; 3: 57–63
  • Barreto J.C., Smith G.S., Strobel N.H.P., McQuillin P.A., Miller T.A. Terephthalic acid: A dosimeter for the detection of hydroxyl radicals in vitro. Life Sciences 1994; 56: PL89–PL96
  • Mason T.J., Lorimer J.P., Bates D.M., Zhao Y. Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrasonics and Sonochemistry 1994; 1: S91–S95
  • Saran M., Summer K.-H. Assaying for hydroxyl radicals: Hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radical Research 1999; 31: 429–439
  • Buettner G.R., Oberley L.W. Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethyl-1-pyrroline-1-oxide. Biochemical Biophysical Research Communications 1978; 83: 69–74
  • Biaglow J.E., Kachur A.V. The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion. Radiation Research 1997; 148: 181–187
  • Reinke L.A., Moore D.R., Rau J.M., McCay P.B. Inorganic phosphate promotes redox cycling of iron in liver microsomes: Effects on free radical reactions. Archives of Biochemistry and Biophysics 1995; 316: 758–764
  • Halliwell B., Gutteridge J.M.C. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS-Letters 1992; 307: 108–112
  • Sawyer D.T., Sobkowiak A., Matsushita T. Metal [ML(x); M=Fe, Cu, Co, Mn]/hydroperoxide-induced activation of dioxygen for the oxygenation of hydrocarbons: Oxygenated Fenton chemistry. Accounts of Chemical Research 1996; 29: 409–416
  • MacFaul P.A., Wayner D.D.M., Ingold K.U. A radical account of “oxygenated Fenton chemistry”. Accounts of Chemical Research 1998; 31: 159–162
  • Walling C. Intermediates in the reactions of Fenton type reagents. Accounts of Chemical Research 1998; 31: 155–157
  • Rush J.D., Maskos Z., Koppenol W.H. Distinction between hydroxyl radical and ferryl species. Methods in Enzymology 1990; 186: 148–156
  • Koppenol W.H., Maskos Z., Rush J.D. Catalysis of oxyradical reactions by iron complexes. Oxidative Damage & Repair: Chemical, Biological and Medical Aspects, K.J.A. Davies. Pergamon Press, Oxford 1991; 814–819, In
  • Luzzatto E., Cohen H., Stockheim C., Wieghardt K., Meyerstein D. Reactions of low valent transition metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 4. The case of Fe(II)L, L=EDTA: HEDTA and TCMA. Free Radical Research 1995; 23: 453–463
  • Gallard H., de Laat J., Legube B. Influence du pH sur la vitesse d'oxydation de composés organiques par FeII/H2O2. Mécanismes réactionnels et modélisation. New Journal of Chemistry 1998; 263–268
  • Yurkova I.L., Schuchmann H.-P., von Sonntag C. Production of OH radicals in the autoxidation of the Fe(II)-EDTA system. Journal of the Chemical Society, Perkin Transactions 1999; 2: 2049–2052
  • Seibig S., van Eldik R. Kinetics of [Fe(II)(edta)] oxidation by molecular oxygen revisited. New evidence for a multistep mechanism. Inorganic Chemistry 1997; 36: 4115–4120
  • Seibig S., van Eldik R. Multistep oxidation kinetics of [Fe-II(Cdta)] [cdta = N,N′, N″,N…'-(1,2-cyclohexanediamine)tetraacetate] with molecular oxygen. European Journal of Inorganic Chemistry 1999; 447–454
  • White R.E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacology and Therapy 1991; 49: 21–42
  • Hamilton G.A. Chemical models and mechanisms for oxygenases. Molecular Mechanisms of Oxygen Activation, O. Hayaishi. Academic Press, New York 1974; 405–451, In
  • Udenfriend S., Cardinale G., G. α-Ketoglutarate coupled dioxygenases. Oxygenases and Oxygen Metabolism, M. Nozaki, S. Yamamoto, Y. Ishimura, M.J. Coon, L. Ernster, R.W. Estabrook. Academic Press, New York 1982; 99–110, In
  • Elstner E.F. Der Sauerstoff. Biochemie. Biologie, Medizin. Wissenschaftsverlag, Mannheim 1990, (and references therein)
  • Barton D.H.R., Taylor D.K. Models for non-heme oxidation enzymes. Pure and Applied Chemistry 1996; 68: 497–504
  • Sobolev A.P., Babushkin D.E., Talsi E.P. Formation of low-spin peroxoiron(III) complexes in Gif-type catalytic systems. Mendeleev Communications 1996; 1: 33–34
  • Perkins M.J. A radical reappraisal of GIF reactions. Chemical Society Reviews 1996; 229–236
  • Jacobsen E.N. Transition metal-catalyzed oxidations: asymmetric epoxidation. Comprehensive Organometallic Chemistry 1995; 12: 1097–1135
  • Lloyd R.V., Hanna P.M., Mason R.P. The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radical Biology and Medicine 1997; 22: 885–888
  • Clutton S. The importance of oxidative stress in apoptosis. British Medical Bulletin 1997; 53: 662–668
  • Bauer G. Elimination of transformed cells by normal cells: A novel concept for the control of carcinogenesis. Histology Histopathology 1996; 11: 237–255
  • Bender K., Blattner C., Knebel A., Lordanov M., Herrlich P., Rahmsdorf H.J. UV-induced signal transduction. Journal of Photochemistry and Photobiology. B:Biol. 1997; 37: 1–17
  • Lehnert B.E., Goodwin E.H. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Research 1997; 57: 2164–2171
  • Mothersill C., Seymour C. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. International Journal of Radiation Biology 1997; 71: 421–427
  • Little J.B., Li C., Nagasawa H., Pfenning T., Vetrovs H. Genomic instability and radiation mutagenesis. Journal de Chimie Physique et de Physicochimie Biologique 1996; 93: 157–164
  • Narayanan P.K., Goodwin E.H., Lehnert B.E. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Research 1997; 57: 3963–3971
  • Brenneisen P., Wenk J., Klotz L.O., Wlaschek M., Briviba K., Krieg T., Sies H., Scharffetter-Kochanek K. Central role of ferrous/ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloprotease (MMP)-1) and stromelysin-1 (MMP-3) mRNA levels in cultured human dermal fibroblasts. Journal of Biological Chemistry 1998; 273: 5279–5287
  • Crawford L.E., Milliken E.E., Irani K., Zweier J.L., Becker L.C., Johnson T.M., Eissa N.T., Crystal R.G., Finkel T., Goldschmidt-Clermont P.J. Superoxide mediated actin response in post-hypoxic endothelial cells. Journal of Biological Chemistry 1996; 271: 26863–26867
  • Sundaresan M., Yu Z.X., Ferrans V.J., Sulciner D.J., Gutkind J.S., Irani K., Goldschmidt-Clermont P.J., Finkel T. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochemical Journal 1996; 318: 379–382
  • Moldovan L., Irani K., Moldovan N.I., Finkel T., Goldschmidt-Clermont P.J. The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxidants and Redox Signaling 1999; 1: 29–43
  • Burdon R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radicals in Biology and Medicine 1995; 18: 775–794
  • Saran M., Michel C., Bors W. Radical functions in vivo: A critical review of current concepts and hypotheses. Zeitschrift fuer Naturforschung C 1998; 53c: 210–227
  • Crawford D.R., Schools G.P., Davies K.J.A. Oxidant-inducible adapt15 RNA is associated with growth arrest- and DNA damage-inducible gadd153 and gadd45. Archives of Biochemistry and Biophysics 1996; 329: 137–144
  • Sundaresan M., Yu Z.X., Ferrans V.J., Irani K., Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995; 270: 296–299
  • Irani K., Goldschmidt-Clermont P.J. Ras, superoxide and signal transduction. Biochemical Pharmacology 1998; 55: 1339–1346
  • Pantopoulos K., Mueller S., Atzberger A., Ansorge W., Stremmel W., Hentze M.W. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. Journal of Biological Chemistry 1997; 272: 9802–9808
  • Gardner P.R., Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. Journal of Biological Chemistry 1992; 267: 8757–8763
  • Rothman R.J., Serroni A., Farber J.L. Cellular pool of transient ferric iron, chelatable by deferoxamine and distinct from ferritin, that is involved in oxidative cell injury. Molecular Pharmacology 1992; 42: 703–710
  • Qian S.Y., Buettner G.R. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an Electron Paramagnetic Resonance spin trapping study. Free Radical Biology and Medicine 1999; 26: 1447–1456

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.