62
Views
56
CrossRef citations to date
0
Altmetric
Review Article

Potential role of oxidized lipids and lipoproteins in antioxidant defense

, , &
Pages 197-215 | Received 09 Dec 1999, Published online: 07 Jul 2009

References

  • Steinberg D., Parthasarathy S., Carew T.E., Khoo J.C., Witztum J.L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. New England Journal of Medicine 1989; 320: 915–924
  • Parthasarathy S. Modified Lipoproteins in the Pathogenesis of Atherosclerosis. R. G. Landes Co, Austin, TX 1994
  • Brown M.S., Basu S.K., Falck J.R., Ho Y.K., Goldstein J.L. The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. Journal of Supramolecular Structure 1980; 13: 67–81
  • Brown M.S., Goldstein J.L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annual Review Biochemistry 1983; 52: 223–261
  • Quinn M.T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proceedings of the National Academy of Sciences of the USA 1988; 85: 2805–2809
  • Hughes H., Mathews B., Lenz M.L., Guyton J.R. Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol. Arteriosclerosis Thrombosis 1994; 14: 1177–1185
  • Sigal E., Laughton C.W., Mulkins M.A. Oxidation, lipoxygenase, and atherogenesis. Annals of New York Academy of Sciences 1994; 714: 211–224
  • Khan B.V., Parthasarathy S.S., Alexander R.W., Medford R.M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. Journal of Clinical Investigations 1995; 95: 1262–1270
  • Schmitt A., Negre-Salvayre A., Troly M., Valdiguie P., Salvayre R. Phospholipid hydrolysis of mildly oxidized LDL reduces their cytotoxicity to cultured endothelial cells. Potential protective role against atherogenesis. Biochimica Biophysica Acta 1995; 1256: 284–292
  • Bielicki J.K., Forte T.M. Evidence that lipid hydroperoxides inhibit plasma lecithin: cholesterol acyltransferase activity. Journal of Lipid Research 1999; 40: 948–954
  • Young S.G., Parthasarathy S. Why are low-density lipoproteins atherogenic?. West Journal of Medicine 1994; 160: 153–164
  • Watanabe K., Ohta Y., Toba K., Ogawa Y., Hanawa H., Hirokawa Y., Kodama M., Tanabe N., Hirono S., Ohkura Y., Nakamura Y., Kato K., Aizawa Y., Fuse I., Miyajima S., Kusano Y., Nagamoto T., Hasegawa G., Naito M. Myocardial CD36 expression and fatty acid accumulation in patients with type I and II CD36 deficiency. Annals Nuclear Medicine 1998; 12: 261–266
  • Bird D.A., Gillotte K.L., Horkko S., Friedman P., Dennis E.A., Witztum J.L., Steinberg D. Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: implications with respect to macrophage recognition of apoptotic cells. Proceedings of the National Academy of Sciences of the USA 1999; 96: 6347–6352
  • Rosenfeld M.E. Inflammation, lipids, and free radicals: lessons learned from the atherogenic process. Seminars on Reproductive Endocrinology 1998; 16: 249–261
  • Navab M., Berliner J.A., Watson A.D., Hama S.Y., Territo M.C., Lusis A.J., Shih D.M., Van Lenten B.J., Frank J.S., Demer L.L., Edwards P.A., Fogelman A.M. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arteriosclerosis, Thrombosis Vascular Biology 1996; 16: 831–842
  • Liao F., Andalibi A., Qiao J.H., Allayee H., Fogelman A.M., Lusis A.J. Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. Journal of Clinical Investigations 1994; 94: 877–884
  • Parthasarathy S., Santanam N., Ramachandran S., Meilhac O. Oxidants and Antioxidants in atherogenesis — an appraisal. Journal of Lipid Research 1999; 40: 2143–2157
  • Quinn M.T., Parthasarathy S., Fong L.G., Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proceedings of the National Academy of Sciences of the USA 1987; 84: 2995–2998
  • Parthasarathy S., Santanam N., Auge N. Oxidized low-density lipoprotein, a two-faced Janus in coronary artery disease?. Biochemical Pharmacology 1998; 56: 279–284
  • Yla-Herttuala S., Palinski W., Rosenfeld M.E., Parthasarathy S., Carew T.E., Butler S., Witztum J.L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. Journal of Clinical Investigations 1989; 84: 1086–1095
  • Boyd H.C., Gown A.M., Wolfbauer G., Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. American Journal of Pathology 1989; 135: 815–825
  • Hoff H.F., O'Neil J. Extracts of human atherosclerotic lesions can modify low density lipoproteins leading to enhanced uptake by macrophages. Atherosclerosis 1988; 70: 29–41
  • de Vries H.E., Buchner B., van Berkel T.J., Kuiper J. Specific interaction of oxidized low-density lipoprotein with macrophage-derived foam cells isolated from rabbit atherosclerotic lesions. Arteriosclerosis, Thrombosis Vascular Biology 1999; 19: 638–645
  • Hirano K., Yamashita S., Nakagawa Y., Ohya T., Matsuura F., Tsukamoto K., Okamoto Y., Matsuyama A., Matsumoto K., Miyagawa J., Matsuzawa Y. Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions. Circulation Research 1999; 85: 108–116
  • Kataoka H., Kume N., Miyamoto S., Minami M., Moriwaki H., Murase T., Sawamura T., Masaki T., Hashimoto N., Kita T. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 1999; 99: 3110–3117
  • Carpenter K.L., Ballantine J.A., Fussell B., Enright J.H., Mitchinson M.J. Oxidation of cholesteryl linoleate by human monocyte-macrophages in vitro. Atherosclerosis 1990; 83: 217–229
  • Mitchinson M.J., Ball R.Y., Carpenter K.H., Enright J.H., Brabbs C.E. Ceroid, macrophages and atherosclerosis. Biochemical Society Transactions 1990; 18: 1066–1069
  • Gey K.F. Cardiovascular disease and vitamins. Concurrent correction of “suboptimal” plasma antioxidant levels may, as important part of “optimal” nutrition, help to prevent early stages of cardiovascular disease and cancer, respectively. Bibliography Nutrition Dietica 1995; 52: 75–91
  • Gey K.F., Moser U.K., Jordan P., Stahelin H.B., Eichholzer M., Ludin E. Increased risk of cardiovascular disease at suboptimal plasma concentrations of essential antioxidants: an epidemiological update with special attention to carotene and vitamin C. American Journal of Clinical Nutrition 1993; 57: 787S–797S
  • Delattre J., Lepage S., Jaudon M.C., Bruckert E., Assogba U., Bonnefont-Rousselot D. The plasma antioxidant status and trace elements in patients with familial hypercholesterolemia treated with LDL-apheresis. Annual Pharmacology Fr 1998; 56: 18–25
  • Rapola J.M., Virtamo J., Ripatti S., Huttunen J.K., Albanes D., Taylor P.R., Heinonen O.P. Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infraction. Lancet 1997; 349: 1715–1720
  • Kritchevsky S.B. Beta-Carotene, carotenoids and the prevention of coronary heart disease. Journal of Nutrition 1999; 129: 5–8
  • Frankel E.N., Kanner J., German J.B., Parks E., Kinsella J.E. Inhibition of oxidation of human low density lipoprotein by phenolic substances in red wine. Lancet 1993; 341: 454–457
  • Sharpe P.C., McGrath L.T., McClean E., Young I.S., Archbold G.P. Effect of red wine consumption on lipoprotein (a) and other risk factors for atherosclerosis. Qjm 1995; 88: 101–108
  • Chisolm G.M. Antioxidants and atherosclerosis: a current assessment. Clinical Cardiology 1991; 14: 125–130
  • Hodis H.N., Mack W.J., LaBree L., Cashin-Hemphill L., Sevanian A., Johnson R., Azen S.P. Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis. JAMA 1995; 273: 1849–1854
  • Azen S.P., Qian D., Mack W.J., Sevanian A., Selzer R.H., Liu C.R., Liu C.H., Hodis H.N. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation 1996; 94: 2369–2372
  • Stephens N.G., Parsons A., Schofield P.M., Kelly F., Cheeseman K., Mitchinson M.J. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996; 347: 781–786
  • Yusuf S. (1999) Effect of ACE inhibition and vitamin E an outcome in chronic CAD: HOPE (Heart Outcomes Prevention Evaluation). 71st Scientific Meeting American Heart Association. November, 1999
  • Fruebis J., Steinberg D., Dresel H.A., Carew T.E. A comparison of the antiatherogenic effects of probucol and of a structural analogue of probucol in low density lipoprotein receptor-deficient rabbits. Journal of Clinical Investigations 1994; 94: 392–398
  • Lauridsen S.T., Mortensen A. Probucol selectively increases oxidation of atherogenic lipoproteins in cholesterol-fed mice and in Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 1999; 142: 169–178
  • Bird D.A., Tangirala R.K., Fruebis J., Steinberg D., Witztum J.L., Palinski W. Effect of probucol on LDL oxidation and atherosclerosis in LDL receptor-deficient mice. Journal of Lipid Research 1998; 39: 1079–1090
  • Benson G.M., Schiffelers R., Nicols C., Latcham J., Vidgeon-Hart M., Toseland C.D., Suckling K.E., Groot P.H. Effect of probucol on serum lipids, atherosclerosis and toxicology in fat-fed LDL receptor deficient mice. Atherosclerosis 1998; 141: 237–247
  • Zhang S.H., Reddick R.L., Avdievich E., Surles L.K., Jones R.G., Reynolds J.B., Quarfordt S.H., Maeda N. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. Journal of Clinical Investigations 1997; 99: 2858–2866
  • Cyrus T., Witztum J.L., Rader D.J., Tangirala R., Fazio S., Linton M.F., Funk C.D. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. Journal of Clinical Investigations 1999; 103: 1597–1604
  • Bocan T.M., Rosebury W.S., Mueller S.B., Kuchera S., Welch K., Daugherty A., Cornicelli J.A. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit (published erratum appears in Atherosclerosis July 1998; 139(1), 201). Atherosclerosis 1998; 136: 203–216
  • Sendobry S.M., Cornicelli J.A., Welch K., Bocan T., Tait B., Trivedi B.K., Colbry N., Dyer R.D., Feinmark S.J., Daugherty A. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. British Journal of Pharmacology 1997; 120: 1199–1206
  • Kuhn H., Chan L. The role of 15-lipoxygenase in atherogenesis: pro- and antiatherogenic actions. Current Opinion of Lipidology 1997; 8: 111–117
  • Brennan M.L., Shih D.M., Anderson M.M., Shi W., Wang X.P., Heinecke J.W., Lusis A.J. Myeloperoxidase-deficiency results in increased atherosclerosis in fat fed mice. Free Radical Biology and Medicine 1999; 27(Suppl. 1)S120–S120
  • Staprans I., Rapp J.H., Pan X.M., Feingold K.R. Oxidized lipids in the diet are incorporated by the liver into very low density lipoprotein in rats. Journal of Lipid Research 1996; 37: 420–430
  • Staprans I., Rapp J.H., Pan X.M., Hardman D.A., Feingold K.R. Oxidized lipids in the diet accelerate the development of fatty streaks in cholesterol-fed rabbits. Arteriosclerosis, Thrombosis Vascular Biology 1996; 16: 533–538
  • Sutherland W.H., Walker R.J., de Jong S.A., van Rij A.M., Phillips V., Walker H.L. Reduced postprandial serum paraoxonase activity after a meal rich in used cooking fat. Arteriosclerosis, Thrombosis Vascular Biology 1999; 19: 1340–1347
  • Van Berkel T.J., De Rijke Y.B., Kruijt J.K. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells. Journal of Biological Chemistry 1991; 266: 2282–2289
  • Steinbrecher U.P., Witztum J.L., Parthasarathy S., Steinberg D. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Arteriosclerosis 1987; 7: 135–143
  • Kontush A., Spranger T., Reich A., Djahansouzi S., Karten B., Braesen J.H., Finckh B., Kohlschutter A., Beisiegel U. Whole plasma oxidation assay as a measure of lipoprotein oxidizability. Biofactors 1997; 6: 99–109
  • Spranger T., Finckh B., Fingerhut R., Kohlschutter A., Beisiegel U., Kontush A. How different constituents of human plasma and low density lipoprotein determine plasma oxidizability by copper. Chemistry, Physics Lipids 1998; 91: 39–52
  • Frei B. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage. American Journal of Clinical Nutrition 1991; 54: 1113S–1118S
  • Hayek T., Oiknine J., Brook J.G., Aviram M. Increased plasma and lipoprotein lipid peroxidation in apo E-deficient mice. Biochemical Biophysical Research Communications 1994; 201: 1567–1574
  • Haffner S.M., Agil A., Mykkanen L., Stern M.P., Jialal I. Plasma oxidizability in subjects with normal glucose tolerance, impaired glucose tolerance, and NIDDM. Diabetes Care 1995; 18: 646–653
  • Nourooz-Zadeh J., Tajaddini-Sarmadi J., Ling K.L., Wolff S.P. Low-density lipoprotein is the major carrier of lipid hydroperoxides in plasma. Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochemical Journal 1996; 313: 781–786
  • Zhang R., Hazen S.L. Neutrophils employ myeloperoxidase to initiate lipid peroxidation in plasma by using multiple diffusible substrates. Free Radical Biology and Medicine 1999; 27(Suppl. 1)S154–S157
  • Parthasarathy S., Quinn M.T., Schwenke D.C., Carew T.E., Steinberg D. Oxidative modification of betavery low density lipoprotein. Potential role in monocyte recruitment and foam cell formation. Arteriosclerosis 1989; 9: 398–404
  • Mohr D., Stocker R. Radical-mediated oxidation of isolated human very-low-density lipoprotein. Arteriosclerosis Thrombosis 1994; 14: 1186–1192
  • McEneny J., Trimble E.R., Young I.S. A simple method for assessing copper-mediated oxidation of very-lowdensity lipoprotein isolated by rapid ultracentrifugation. Annals of Clinical Biochemistry 1998; 35: 504–514
  • Greilberger J., Jurgens G. Oxidation of high-density lipoprotein HDL3 leads to exposure of apo-AI and apo-AII epitopes and to formation of aldehyde protein adducts, and influences binding of oxidized low-density lipoprotein to type I and type III collagen in vitro. Biochemical Journal 1998; 331: 185–191
  • Bonnefont-Rousselot D., Khalil A., Delattre J., Jore D., Gardes-Albert M. Oxidation of human high-density lipoproteins by ·OH and ·OH/O(·-)2 free radicals. Radiation Research 1997; 147: 721–728
  • Nagano Y., Arai H., Kita T. High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. Proceedings of the National Academy Sciences of the USA 1991; 88: 6457–6461
  • Wang G.P., Deng Z.D., Ni J., Qu Z.L. Oxidized low density lipoprotein and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit peritoneal exudate macrophages. Atherosclerosis 1997; 133: 31–36
  • La Ville A.E., Sola R., Balanya J., Turner P.R., Masana L. In vitro oxidised HDL is recognized by the scavenger receptor of macrophages: implications for its protective role in vivo. Atherosclerosis 1994; 105: 179–189
  • Yla-Herttuala S., Palinski W., Rosenfeld M.E., Steinberg D., Witztum J.L. Lipoproteins in normal and atherosclerotic aorta. European Heart Journal 1990; 11(Suppl. E)88–99
  • Avogaro P., Bon G.B., Cazzolato G. Presence of a modified low density lipoprotein in humans (published erratum appears in Arteriosclerosis November–December 1988; 8(6), 857). Arteriosclerosis 1988; 8: 79–87
  • Sevanian A., Hodis H.N., Hwang J., McLeod L.L., Peterson H. Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL. Journal of Lipid Research 1995; 36: 1971–1986
  • Rong J.X., Rangaswamy S., Shen L., Dave R., Chang Y.H., Peterson H., Hodis H.N., Chisolm G.M., Sevanian A. Arterial injury by cholesterol oxidation products causes endothelial dysfunction and arterial wall cholesterol accumulation. Arteriosclerosis, Thrombosis Vascular Biology 1998; 18: 1885–1894
  • Hodis H.N., Chauhan A., Hashimoto S., Crawford D.W., Sevanian A. Probucol reduces plasma and aortic wall oxysterol levels in cholesterol fed rabbits independently of its plasma cholesterol lowering effect. Atherosclerosis 1992; 96: 125–134
  • Aznar J., Santos M.T., Valles J., Sala J. Serum malondialdehyde-like material (MDA-LM) in acute myocardial infarction. Journal of Clinical Pathology 1983; 36: 712–715
  • Wong S.H., Knight J.A., Hopfer S.M., Zaharia O., Leach C.N., Jr., Sunderman F.W., Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clinical Chemistry 1987; 33: 214–220
  • Christison J., Karjalainen A., Brauman J., Bygrave F., Stocker R. Rapid reduction and removal of HDL-but not LDL-associated cholesteryl ester hydroperoxides by rat liver perfused in situ. Biochemical Journal 1996; 314: 739–742
  • Liu M., St. Clair R.W., Subbaiah P.V. Impaired function of lecithin:cholesterol acyltransferase in atherosclerosis-susceptible White Carneau pigeons: possible effects on metabolism of oxidized phospholipids. Journal of Lipid Research 1998; 39: 245–254
  • Frostegard J., Huang Y.H., Ronnelid J., Schafer-Elinder L. Platelet-activating factor and oxidized LDL induce immune activation by a common mechanism. Arteriosclerosis, Thrombosis Vascular Biology 1997; 17: 963–968
  • Dentan C., Lesnik P., Chapman M.J., Ninio E. PAF-acether-degrading acetylhydrolase in plasma LDL is inactivated by copper- and cell-mediated oxidation. Arteriosclerosis Thrombosis 1994; 14: 353–360
  • Itabe H., Yamamoto H., Imanaka T., Shimamura K., Uchiyama H., Kimura J., Sanaka T., Hata Y., Takano T. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. Journal of Lipid Research 1996; 37: 45–53
  • Juul K., Nielsen L.B., Munkholm K., Stender S., Nordestgaard B.G. Oxidation of plasma low-density lipoprotein accelerates its accumulation and degradation in the arterial wall in vivo. Circulation 1996; 94: 1698–1704
  • Salmon S., Maziere C., Theron L., Beucler I., Ayrault-Jarrier M., Goldstein S., Polonovski J. Immunological detection of low-density lipoproteins modified by malondialdehyde in vitro or in vivo. Biochimica Biophysica Acta 1987; 920: 215–220
  • Holvoet P., Perez G., Zhao Z., Brouwers E., Bernar H., Collen D. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. Journal of Clinical Investigations 1995; 95: 2611–2619
  • Hodis H.N., Kramsch D.M., Avogaro P., Bittolo-Bon G., Cazzolato G., Hwang J., Peterson H., Sevanian A. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL). Journal of Lipid Research 1994; 35: 669–677
  • Itabe H., Takeshima E., Iwasaki H., Kimura J., Yoshida Y., Imanaka T., Takano T. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. Journal of Biological Chemistry 1994; 269: 15 274–15 279
  • Sima A., Stancu C., Starodub O., Cristea C., Simionescu M. Immunodetection of modified lipoproteins in plasma and arterial walls of patients with coronary heart disease. Romanian Journal of Internal Medicine 1997; 35: 29–38
  • Palinski W., Horkko S., Miller E., Steinbrecher U.P., Powell H.C., Curtiss L.K., Witztum J.L. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. Journal of Clinical Investigations 1996; 98: 800–814
  • Maor I., Hayek T., Coleman R., Aviram M. Plasma LDL oxidation leads to its aggregation in the atherosclerotic apolipoprotein E-deficient mice. Arteriosclerosis, Thrombosis Vascular Biology 1997; 17: 2995–3005
  • Shimano, H., Yamada, N., Ishibashi, S., Mokuno, H., Mori, N., Gotoda, T., Harada, K., Akanuma, Y., Murase, T., Yazaki, Y., et al. Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ionexchange chromatography. Journal of Lipid Research 1991; 32: 763–773
  • Dejager S., Turpin G. Atherogenicity of low-density lipoproteins (LDL). A problem of quantity or quality?. Presse Medicine 1995; 24: 1772–1776
  • de Graaf J., Hendriks J.C., Demacker P.N., Stalenhoef A.F. Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects. Normalization after clofibrate treatment. Arteriosclerosis Thrombosis 1993; 13: 712–719
  • Reaven P.D., Herold D.A., Barnett J., Edelman S. Effects of Vitamin E on susceptibility of low-density lipoprotein and low-density lipoprotein subfractions to oxidation and on protein glycation in NIDDM. Diabetes Care 1995; 18: 807–816
  • Reaven P.D., Grasse B.J., Tribble D.L. Effects of linoleate-enriched and oleate-enriched diets in combination with alpha-tocopherol on the susceptibility of LDL and LDL subfractions to oxidative modification in humans. Arteriosclerosis Thrombosis 1994; 14: 557–566
  • Fuster V., Pearson T., Parthasarathy S. 27th Bethesda Conference: Efficacy of risk factor management. Journal of American College of Cardiology 1996; 27: 957–1047
  • Niebauer J., Hambrecht R., Schlierf G., Marburger C., Kalberer B., Kubler W., Schuler G. Five years of physical exercise and low fat diet: effects on progression of coronary artery disease. Journal of Cardiopulmanary Rehabilitation 1995; 15: 47–64
  • Samsonov M.A., Levachev M.M., Korf A.V. Pogozheva, II, Abbakumov A.S., Feofilaktova S.N., Dreval A.V. Effects of anti-atherosclerosis diet containing omega 3 fatty acids on the lipid spectrum of blood and cell membranes in patients with ischemic heart disease and essential hypertension. Vopr Pitan 1990; 14–18
  • Scarabin P.Y., Alhenc-Gelas M., Oger E., Plu-Bureau G. Hormone replacement therapy and circulating ICAM-1 in postmenopausal women — a randomised controlled trial in process citation. Thrombosis Haemostasis 1999; 81: 673–675
  • Wannamethee S.G., Shaper A.G., Walker M. Changes in physical activity, mortality, and incidence of coronary heart disease in older men. Lancet 1998; 351: 1603–1608
  • Erikssen G., Liestol K., Bjornholt J., Thaulow E., Sandvik L., Erikssen J. Changes in physical fitness and changes in mortality. Lancet 1998; 352: 759–762
  • De Backer G. Physical activity and psychosocial variables in atherosclerosis. Acta Cardiology Suppl. 1988; 29: 107–112
  • Blair S.N., Kohl H.W., 3rd, Barlow C.E., Paffenbarger R.S., Jr., Gibbons L.W., Macera C.A. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 1995; 273: 1093–1098
  • Hardman A.E. Exercise in the prevention of atherosclerotic, metabolic and hypertensive diseases: a review. Journal of Sports Science 1996; 14: 201–218
  • Young D.R., Pelligra R., Shapira J., Adachi R.R., Skrettingland K. Glucose oxidation and replacement during prolonged exercise in man. Journal of Applied Physiology 1967; 23: 734–741
  • Winder W.W., Baldwin K.M., Holloszy J.O. Exercise-induced adaptive increase in rate of oxidation of beta-hydroxybutyrate by skeletal muscle. Proceedings of the Society of Experimental Biology Medicine 1973; 143: 753–755
  • Gohil K., Viguie C., Stanley W.C., Brooks G.A., Packer L. Blood glutathione oxidation during human exercise. Journal of Applied Physiology 1988; 64: 115–119
  • Salo D.C., Donovan C.M., Davies K.J. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radical Biology and Medicine 1991; 11: 239–246
  • Witt E.H., Reznick A.Z., Viguie C.A., Starke-Reed P., Packer L. Exercise, oxidative damage and effects of antioxidant manipulation. Journal of Nutrition 1992; 122: 766–773
  • Poulsen H.E., Loft S., Vistisen K. Extreme exercise and oxidative DNA modification. Journal of Sports Science 1996; 14: 343–346
  • Leeuwenburgh C., Hansen P.A., Holloszy J.O., Heinecke J.W. Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radical Biology and Medicine 1999; 27: 186–192
  • Kramsch D.M., Aspen A.J., Abramowitz B.M., Kreimendahl T., Hood W.B., Jr. Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. New England Journal of Medicine 1981; 305: 1483–1489
  • Berg A., Keul J., Ringwald G., Stippig J., Deus B. Serumlipoprotein cholesterol in sedentary and trained male patients with coronary heart disease. Clinical Cardiology 1981; 4: 233–237
  • Goldberg L., Elliot D.L., Schutz R.W., Kloster F.E. Changes in lipid and lipoprotein levels after weight training. JAMA 1984; 252: 504–506
  • Tran Z.V., Weltman A. Differential effects of exercise on serum lipid and lipoprotein levels seen with changes in body weight. A meta-analysis. JAMA 1985; 254: 919–924
  • Suzuki K., Naganuma S., Totsuka M., Suzuki K.J., Mochizuki M., Shiraishi M., Nakaji S., Sugawara K. Effects of exhaustive endurance exercise and its one-week daily repetition on neutrophil count and functional status in untrained men. International Journal of Sports Medicine 1996; 17: 205–212
  • Niess A.M., Baumann M., Roecker K., Horstmann T., Mayer F., Dockhuth H.H. Effects of intensive endurance exercise on DNA damage in leucocytes. Journal of Sports Medicine and Physical Fitness 1998; 38: 111–115
  • Camus G., Nys M., Poortmans J.R., Venneman I., Monfils T., Deby-Dupont G., Juchmes-Ferir A., Deby C., Lamy M., Duchateau J. Possible in vivo tolerance of human polymorphonuclear neutrophil to low-grade exercise-induced endotoxaemia. Mediators Inflammation 1998; 7: 413–415
  • Camus G., Nys M., Poortmans J.R., Venneman I., Monfils T., Deby-Dupont G., Juchmes-Ferir A., Deby C., Lamy M., Duchateau J. Endotoxaemia, production of tumour necrosis factor alpha and polymorphonuclear neutrophil activation following strenuous exercise in humans. European Journal of Applied Physiology 1998; 79: 62–68
  • Suzuki K., Sato H., Kikuchi T., Abe T., Nakaji S., Sugawara K., Totsuka M., Sato K., Yamaya K. Capacity of circulating neutrophils to produce reactive oxygen species after exhaustive exercise. Journal of Applied Physiology 1996; 81: 1213–1222
  • Shern-Brewer R., Santanam N., Wetzstein C., White-Welkley J., Parthasarathy S. Exercise and cardiovascular disease: a new perspective. Arteriosclerosis, Thrombosis Vascular Biology 1998; 18: 1181–1187
  • Wetzstein C.J., Shern-Brewer R.A., Santanam N., Green N.R., White-Welkley J.E., Parthasarathy S. Does acute exercise affect the susceptibility of low density lipoprotein to oxidation?. Free Radical Biology and Medicine 1998; 24: 679–682
  • Sanchez-Quesada J.L., Homs-Serradesanferm R., Serrat-Serrat J., Serra-Grima J.R., Gonzalez-Sastre F., Ordonez-Llanos J. Increase of LDL susceptibility to oxidation occurring after intense, long duration aerobic exercise. Atherosclerosis 1995; 118: 297–305
  • Vasankari T.J., Kujala U.M., Vasankari T.M., Vuorimaa T., Ahotupa M. Effects of acute prolonged exercise on-serum and LDL oxidation and antioxidant defences. Free Radical Biology and Medicine 1997; 22: 509–513
  • Beard C.M., Barnard R.J., Robbins D.C., Ordovas J.M., Schaefer E.J. Effects of diet and exercise on qualitative and quantitative measures of LDL and its susceptibility to oxidation. Arteriosclerosis, Thrombosis Vascular Biology 1996; 16: 201–207
  • Hishikawa K., Nakaki T., Marumo T., Suzuki H., Kato R., Saruta T. Up-regulation of nitric oxide synthase by estradiol in human aortic endothelial cells. FEBS Letters 1995; 360: 291–293
  • Gura T. Estrogen: key player in heart disease among women (news). Science 1995; 269: 771–773
  • Bush T.L., Espeland M.A., Mebane-Sims I. The postmenopausal estrogen/progestin interventions (PEPI) trial. Introduction. Control Clinical Trials 1995; 16: 1S–2S
  • Riedel M., Rafflenbeul W., Lichtlen P. Ovarian sex steroids and atherosclerosis. Clinical Investigations 1993; 71: 406–412
  • Subbiah M.T., Kessel B., Agrawal M., Rajan R., Abplanalp W., Rymaszewski Z. Antioxidant potential of specific estrogens on lipid peroxidation. Journal of Clinical Endocrinology Metabolism 1993; 77: 1095–1097
  • Niki E., Nakano M. Estrogens as antioxidants. Methods Enzymology 1990; 186: 330–333
  • Nakano M., Sugioka K., Naito I., Takekoshi S., Niki E. Novel and potent biological antioxidants on membrane phospholipid peroxidation: 2-hydroxy estrone and 2-hydroxy estradiol. Biochemical Biophysical Research Communications 1987; 142: 919–924
  • Sugioka K., Shimosegawa Y., Nakano M. Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Letters 1987; 210: 37–39
  • Ruiz-Larrea M.B., Leal A.M., Liza M., Lacort M., de Groot H. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 1994; 59: 383–388
  • Miller C.P., Jirkovsky I., Hayhurst D.A., Adelman S.J. In vitro antioxidant effects of estrogens with a hindered 3-OH function on the copper-induced oxidation of low density lipoprotein. Steroids 1996; 61: 305–308
  • Taniguchi S., Yanase T., Kobayashi K., Takayanagi R., Haji M., Umeda F., Nawata H. Catechol estrogens are more potent antioxidants than estrogens for the Cu(2+)-catalyzed oxidation of low or high density lipoprotein: antioxidative effects of steroids on lipoproteins. Endocrine Journal 1994; 41: 605–611
  • Rifici V.A., Khachadurian A.K. The inhibition of low-density lipoprotein oxidation by 17-beta estradiol. Metabolism 1992; 41: 1110–1114
  • Maziere C., Auclair M., Ronveaux M.F., Salmon S., Santus R., Maziere J.C. Estrogens inhibit copper and cell-mediated modification of low density lipoprotein. Atherosclerosis 1991; 89: 175–182
  • Negre-Salvayre A., Pieraggi M.T., Mabile L., Salvayre R. Protective effect of 17 beta-estradiol against the cytotoxicity of minimally oxidized LDL to cultured bovine aortic endothelial cells. Atherosclerosis 1993; 99: 207–217
  • Huber L.A., Scheffler E., Poll T., Ziegler R., Dresel H.A. 17 beta-estradiol inhibits LDL oxidation and cholesteryl ester formation in cultured macrophages. Free Radical Research Communication 1990; 8: 167–173
  • Shwaery G.T., Vita J.A., Keaney J.F., Jr. Antioxidant protection of LDL by physiological concentrations of 17 beta-estradiol. Requirement for estradiol modification. Circulation 1997; 95: 1378–1385
  • Sack M.N., Rader D.J., Cannon R.O., 3rd. Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet 1994; 343: 269–270
  • Kanji S.S., Kuohung W., Labaree D.C., Hochberg R.B. Regiospecific esterification of estrogens by lecithin: cholesterol acyltransferase. Journal of Clinical Endocrinology Metabolism 1999; 84: 2481–2488
  • Santanam N., Shern-Brewer R., McClatchey R., Castellano P.Z., Murphy A.A., Voelkel S., Parthasarathy S. Estradiol as an antioxidant: incompatible with its physiological concentrations and function. Journal of Lipid Research 1998; 39: 2111–2118
  • Klebanoff S.J. Estrogen binding by leukocytes during phagocytosis. Journal of Experimental Medicine 1977; 145: 983–998
  • Jansson G. Oestrogen-induced enhancement of myeloperoxidase activity in human polymorphonuclear leukocytes — a possible cause of oxidative stress in inflammatory cells. Free Radical Research Communication 1991; 14: 195–208
  • Davidenkova E.F., Shafron M.G. Myeloperoxidase of neutrophils and its possible role in lipid peroxidation processes in arteriosclerosis. Klinika Medika (Moska) 1989; 67: 56–58
  • Savenkova M.L., Mueller D.M., Heinecke J.W. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. Journal of Biological Chemistry 1994; 269: 20 394–20 400
  • Santanam N., Parthasarathy S. Paradoxical actions of antioxidants in the oxidation of low density lipoprotein by peroxidases. Journal of Clinical Investigations 1995; 95: 2594–2600
  • McNabb T., Sproul J., Jellinck P.H. Effect of phenols on the oxidation of estradiol by uterine peroxidase. Canadian Journal of Biochemistry 1975; 53: 855–860
  • Jellinck P.H., Lovsted J., Newcombe A.M. Oxidation of [14C]diethylstilbestrol epoxide by uterine peroxidase: a possible protective mechanism. Biochemical Pharmacology 1983; 32: 3247–3249
  • Markides C.S.A., Roy D., Liehr J.G. Concentration dependence of prooxidant and antioxidant properties of catecholestrogens. Archives of Biochemistry Biophysics 1998; 360: 105–112
  • Ho S.M., Roy D. Sex hormone-induced nuclear DNA damage and lipid peroxidation in the dorsolateral prostates of Noble rats. Cancer Letter 1994; 84: 155–162
  • Kose K., Dogan P., Ozesmi C. Contraceptive steroids increase erythrocyte lipid peroxidation in female rats. Contraception 1993; 47: 421–425
  • Le Petit-Thevenin J., Lerique B., Nobili O., Boyer J. Estrogen modulates phospholipid acylation in red blood cells: relationship to cell aging. American Journal of Physiology 1991; 261: C423–C427
  • Camus G., Felekidis A., Pincemail J., Deby-Dupont G., Deby C., Juchmes-Ferir A., Lejeune R., Lamy M. Blood levels of reduced/oxidized glutathione and plasma concentration of ascorbic acid during eccentric and concentric exercises of similar energy cost. Archives of International Physiology Biochimica Biophysica 1994; 102: 67–70
  • Nieman D.C. Immune response to heavy exertion. Journal of Applied Physiology 1997; 82: 1385–1394
  • Kondo E., Kanai K. Host lipids in tuberculous infection. II. Cholesterol. Kekkaku 1981; 56: 41–47
  • McGrath L.T., Mallon P., Dowey L., Silke B., McClean E., McDonnell M., Devine A., Copeland S., Elborn S. Oxidative stress during acute respiratory exacerbations in cystic fibrosis. Thorax 1999; 54: 518–523
  • Miller D.J., Keeton D.G., Webber B.L., Pathol F.F., Saunders S.J. Jaundice in severe bacterial infection. Gastroenterology 1976; 71: 94–97
  • Parthasarathy S., Khoo J.C., Miller E., Barnett J., Witztum J.L., Steinberg D. Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis. Proceedings of the National Academy of Sciences of the USA 1990; 87: 3894–3898
  • Kahl P.E., Schimke E., Hildebrandt R., Beitz J., Schimke I., Beitz H., Mrochen H., Mest H.J. The influence of cod-liver oil diet on various lipid metabolism parameters, the thromboxane formation capacity, platelet function and the serum MDA level in patients suffering from myocardial infarction. Cor Vasa 1987; 29: 199–208
  • Mabile L., Salvayre R., Bonnafe M.J., Negre-Salvayre A. Oxidizability and subsequent cytotoxicity of chylomicrons to monocytic U937 and endothelial cells are dependent on dietary fatty acid composition. Free Radical Biology and Medicine 1995; 19: 599–607
  • Martin D.D., Robbins M.E., Spector A.A., Wen B.C., Hussey D.H. The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue. Lipids 1996; 31: 1283–1288
  • Gustafsson I.B., Vessby B., Nydahl M. Effects of lipid-lowering diets enriched with monounsaturated and polyunsaturated fatty acids on serum lipoprotein composition in patients with hyperlipoproteinaemia. Atherosclerosis 1992; 96: 109–118
  • Mata P., Varela O., Alonso R., Lahoz C., de Oya M., Badimon L. Monounsaturated and polyunsaturated n-6 fatty acid-enriched diets modify LDL oxidation and decrease human coronary smooth muscle cell DNA synthesis. Arteriosclerosis, Thrombosis Vascular Biology 1997; 17: 2088–2095
  • Wolfe M.S., Sawyer J.K., Morgan T.M., Bullock B.C., Rudel L.L. Dietary polyunsaturated fat decreases coronary artery atherosclerosis in a pediatric-aged population of African green monkeys. Arteriosclerosis Thrombosis 1994; 14: 587–597
  • Rudel L.L., Kelley K., Sawyer J.K., Shah R., Wilson M.D. Dietary monounsaturated fatty acids promote aortic atherosclerosis in LDL receptor-null, human ApoB100-overexpressing transgenic mice. Arteriosclerosis, Thrombosis Vascular Biology 1998; 18: 1818–1827
  • Thomas M.J., Rudel L.L. Dietary fatty acids, low density lipoprotein composition and oxidation and primate atherosclerosis. Journal of Nutrition 1996; 126: 1058S–1062S
  • Thomas M.J., Chen Q., Franklin C., Rudel L.L. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane). Free Radical Biology and Medicine 1997; 23: 927–935
  • Triau J.E., Meydani S.N., Schaefer E.J. Oxidized low density lipoprotein stimulates prostacyclin production by adult human vascular endothelial cells. Arteriosclerosis 1988; 8: 810–818
  • Yokode M., Kita T., Kikawa Y., Ogorochi T., Narumiya S., Kawai C. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein. Journal of Clinical Investigations 1988; 81: 720–729
  • Kinscherf R., Deigner H.P., Usinger C., Pill J., Wagner M., Kamencic H., Hou D., Chen M., Schmiedt W., Schrader M., Kovacs G., Kato K., Metz J. Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. FASEB Journal 1997; 11: 1317–1328
  • Yoshioka T., Homma T., Meyrick B., Takeda M., Moore-Jarrett T., Kon V., Ichikawa I. Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells. Kidney International 1994; 46: 405–413
  • Ishikawa K., Navab M., Leitinger N., Fogelman A.M., Lusis A.J. Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. Journal of Clinical Investigations 1997; 100: 1209–1216
  • Agarwal A., Balla J., Balla G., Croatt A.J., Vercellotti G.M., Nath K.A. Renal tubular epithelial cells mimic endothelial cells upon exposure to oxidized LDL. American Journal of Physiology 1996; 271: F814–F823
  • Stocker R. Induction of haem oxygenase as a defence against oxidative stress. Free Radical Research Communications 1990; 9: 101–112
  • Ramasamy S., Parthasarathy S., Harrison D.G. Regulation of endothelial nitric oxide synthase gene expression by oxidized linoleic acid. Journal of Lipid Research 1998; 39: 268–276
  • Bertling C.J., Lin F., Girotti A.W. Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells. Photochemistry Photobiology 1996; 64: 137–142
  • Marui N., Offermann M.K., Swerlick R., Kunsch C., Rosen C.A., Ahmad M., Alexander R.W., Medford R.M. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. Journal of Clinical Investigations 1993; 92: 1866–1874
  • Schmidt A.M., Hori O., Chen J.X., Li J.F., Crandall J., Zhang J., Cao R., Yan S.D., Brett J., Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. Journal of Clinical Investigations 1995; 96: 1395–1403
  • Bates S.R., Jett C.M., Miller J.E. Prevention of the hyperlipidemic serum or LDL-induced cellular cholesterol ester accumulation by 22-hydroxycholesterol and its analogue. Biochimica Biophysica Acta 1983; 753: 281–293
  • Lovlin R., Cottle W., Pyke I., Kavanagh M., Belcastro A.N. Are indices of free radical damage related to exercise intensity. European Journal of Applied Physiology 1987; 56: 313–316
  • Kanter M.M., Lesmes G.R., Kaminsky L.A., La Ham-Saeger J., Nequin N.D. Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometer race. Relationship to lipid peroxidation. European Journal of Applied Physiology 1988; 57: 60–63
  • Maughan R.J., Donnelly A.E., Gleeson M., Whiting P.H., Walker K.A., Clough P.J. Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle Nerve 1989; 12: 332–336
  • Kanter M.M., Nolte L.A., Holloszy J.O. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. Journal of Applied Physiology 1993; 74: 965–969
  • Rokitzki L., Logemann E., Sagredos A.N., Murphy M., Wetzel-Roth W., Keul J. Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiology Scandinavia 1994; 151: 149–158
  • Meydani M., Evans W.J., Handelman G., Biddle L., Fielding R.A., Meydani S.N., Burrill J., Fiatarone M.A., Blumberg J.B., Cannon J.G. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. American Journal of Physiology 1993; 264: R992–R998
  • Okamura K., Doi T., Hamada K., Sakurai M., Yoshioka Y., Mitsuzono R., Migita T., Sumida S., Sugawa-Katayama Y. Effect of repeated exercise on urinary 8-hydroxy-deoxyguanosine excretion in humans. Free Radicals Research 1997; 26: 507–514
  • Marzatico F., Pansarasa O., Bertorelli L., Somenzini L., Della Valle G. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. Journal of Sports Medicine Physical Fitness 1997; 37: 235–239
  • Balakrishnan S.D., Anuradha C.V. Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochemistry Function 1998; 16: 269–275
  • Buczynski A., Kedziora J., Tkaczewski W., Wachowicz B. Effect of submaximal physical exercise on antioxidative protection of human blood platelets. International Journal of Sports Medicine 1991; 12: 52–54
  • Pincemail J., Camus G., Roesgen A., Dreezen E., Bertrand Y., Lismonde M., Deby-Dupont G., Deby C. Exercise induces pentane production and neutrophil activation in humans. Effect of propranolol. European Journal of Applied Physiology 1990; 61: 319–322
  • Dillard C.J., Litov R.E., Savin W.M., Dumelin E.E., Tappel A.L. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. Journal of Applied Physiology 1978; 45: 927–932
  • Sastre J., Asensi M., Gasco E., Pallardo F.V., Ferrero J.A., Furukawa T., Vina J. Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. American Journal of Physiology 1992; 263: R992–R995
  • Viguie C.A., Frei B., Shigenaga M.K., Ames B.N., Packer L., Brooks G.A. Antioxidant status and indexes of oxidative stress during consecutive days of exercise. Journal of Applied Physiology 1993; 75: 566–572
  • Sen C.K., Rankinen T., Vaisanen S., Rauramaa R. Oxidative stress after human exercise: effect of N-acetylcysteine supplementation. Journal of Applied Physiology 1994; 76: 2570–2577
  • Chung S.C., Goldfarb A.H., Jamurtas A.Z., Hegde S.S., Lee J. Effect of exercise during the follicular and luteal phases on indices of oxidative stress in healthy women. Medicine Science Sports Exercise 1999; 31: 409–413
  • Duthie G.G., Robertson J.D., Maughan R.J., Morrice P.C. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Archives of Biochemistry Biophysics 1990; 282: 78–83
  • Pincemail J., Deby C., Camus G., Pirnay F., Bouchez R., Massaux L., Goutier R. Tocopherol mobilization during intensive exercise. European Journal of Applied Physiology 1988; 57: 189–191
  • Oostenbrug G.S., Mensink R.P., Hardeman M.R., De Vries T., Brouns F., Hornstra G. Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E. Journal of Applied Physiology 1997; 83: 746–752
  • Rokitzki L., Logemann E., Huber G., Keck E., Keul J. Alpha-tocopherol supplementation in racing cyclists during extreme endurance training. International Journal of Sports Nutrition 1994; 4: 253–264
  • Brites F.D., Evelson P.A., Christiansen M.G., Nicol M.F., Basilico M.J., Wikinski R.W., Llesuy S.F. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clinical Science (Colch) 1999; 96: 381–385
  • Lawson D.L., Chen L., Mehta J.L. Effects of exercise-induced oxidative stress on nitric oxide release and antioxidant activity. American Journal of Cardiology 1997; 80: 1640–1642
  • Tessier F., Margaritis I., Richard M.J., Moynot C., Marconnet P. Selenium and training effects on the glutathione system and aerobic performance. Medicine Science Sports Exercise 1995; 27: 390–396
  • Kanaley J.A., Ji L.L. Antioxidant enzyme activity during prolonged exercise in amenorrheic and eumenorrheic athletes. Metabolism 1991; 40: 88–92
  • Camus G., Pincemail J., Ledent M., Juchmes-Ferir A., Lamy M., Deby-Dupont G., Deby C. Plasma levels of polymorphonuclear elastase and myeloperoxidase after uphill walking and downhill running at similar energy cost. International Journal of Sports Medicine 1992; 13: 443–446
  • Zeitler H., Ko Y., Zimmermann C., Nickenig G., Glanzer K., Walger P., Sachinidis A., Vetter H. Elevated serum concentrations of soluble adhesion molecules in coronary artery disease and acute myocardial infarction. European Journal of Medical Research 1997; 2: 389–394
  • Hogg N., Kalyanaraman B., Joseph J., Struck A., Parthasarathy S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Letters 1993; 334: 170–174
  • Maines M.D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB Journal 1988; 2: 2557–2568
  • Hara S., Shike T., Takasu N., Mizui T. Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells. Arteriosclerosis, Thrombosis Vascular Biology 1997; 17: 1258–1266
  • Boissonneault G.A., Hennig B., Ouyang C.M. Oxysterols, cholesterol biosynthesis, and vascular endothelial cell monolayer barrier function. Proceedings of the Society of Experimental Biology Medicine 1991; 196: 338–343
  • Darley-Usmar V.M., Severn A., O'Leary V.J., Rogers M. Treatment of macrophages with oxidized low-density lipoprotein increases their intracellular glutathione content. Biochemical Journal 1991; 278: 429–434
  • Meilhac O., Zhou M., Santanam N., Parthasarathy S. Oxidative stress induces expression of catalase gene in smooth muscle cells. (A331). Free Radical Biology and Medicine 1999; 27(Suppl. 1)S107–S107
  • Meilhac O., Ramachandran S., Santanam N., Parthasarathy S. Exercise-induced catalase expression in normal mice aorta. (A330). Free Radical Biology and Medicine 1999; 27(Suppl. 1)S107–S107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.