72
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Mechanisms of Saccharomyces Cerevisiae PMA1 H+-ATPase inactivation by Fe2+, H2O2 and Fenton reagents

, &
Pages 643-653 | Received 14 Dec 2000, Published online: 07 Jul 2009

References

  • Rohn T.T., Hinds T.R., Vincenzi F.F. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-di-1-pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent novel antioxidant/free radical scavenger. Biochemical Pharmacology 1996; 51: 471–476
  • Biliński T., Litwinska J., Blaszczynski M., Bajus A. SOD deficiency and the toxicity of the products of PUFA in yeast. Biochemica et Biophysica Acta 1989; 1001: 102–106
  • Janda S., Gille G., Sigler K., Höfer M. Effect of hydrogen peroxide on sugar transport in Schizosac-charmyces pombe. Absence of membrane lipid peroxidation. Folia Microbiologica 1993; 38: 135–140
  • Mense M., Stark G., Apell H.J. Effects of free radicals on partial reactions of the Na+,K+-ATPase. Journal of Membrane Biology 1997; 156: 63–71
  • Goldshleger R., Karlish S.J.D. The energy transduction mechanism of Na+,K+-ATPase studied with iron-catalyzed oxidative cleavage. Journal of Biological Chemistry 1999; 274: 16213–16221
  • Moreau V.H., Castilho R.F., Ferreira S.T., Carvalho-Alvez P.C. Oxidative damage to sarcoplasmic reticulum Ca2+-ATPase at submicromolar iron concentrations: Evidence for metal-catalyzed oxidation. Free Radical Biology and Medicine 1998; 25: 554–560
  • Xu K.Y., Zweier J.L., Becker L.C. Hydroxyl radical inhibits sacroplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site. Circulation Research 1997; 80: 76–81
  • Scherer N.M., Deamer D.W. Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+-ATPase. Archives of Biochemistry and Biophysics 1986; 246: 589–601
  • Thomas C.C., Reed D.J. Radical-induced inactivation of kidney Na+,K+-ATPase: sensitivity to membrane lipid peroxidation and the protective effect of vitamin E. Archives of Biochemistry and Biophysics 1990; 281: 96–105
  • Rao R., Slayman C.W. Plasma-membrane and related ATPases. The Mycota: Biochemistry and Molecular Biology, R. Brambl, G.A. Marzluf. Springer, New York 1996; Vol. III: 29–56, In
  • Petrov V.V., Pardo J.P., Slayman C.W. Reactive cysteines of the yeast plasma-membrane H+-ATPase (PMA1). Journal of Biological Chemistry 1997; 272: 1688–1693
  • Nakamoto R.K., Verjovski-Almeida S., Allen K.E., Ambesi A., Rao R., Slayman C.W. Substitutions of aspartate 378 in the phosphorylation domain of the yeast PMA1 H+-ATPase disrupt protein folding and biogenesis. Journal of Biological Chemistry 1998; 273: 7338–7344
  • Nakamoto R.K., Rao R., Slayman C.W. Expression of the yeast plasma membrane H+-ATPase in secretory vesicles. A new strategy for directed mutagenesis. Journal of Biological Chemistry 1991; 266: 7940–7949
  • Ambesi T., Allen K., Slayman C.W. Isolation of transport-competent secretory vesicles from Saccharomyces cerevisiae. Analytical Biochemistry 1997; 251: 127–129
  • Fiske C.H., Subbarow Z. The colorimetric determination of phosphorus. Journal of Biological Chemistry 1925; 66: 375–400
  • Buege J.A., Aust S.D. Microsomal lipid peroxidation. Methods in Enzymology 1978; 52: 302–310
  • Laemmli U.K. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 1970; 227: 680–685
  • Davies J.M.S., Lowry C.V., Davies K.J.A. Transient adaptation to oxidative stress in yeast. Archives of Biochemistry and Biophysics 1995; 317: 1–6
  • Izawa S., Maeda K., Miki T., Mano J., Inoue Y., Kimura A. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochemical Journal 1998; 330: 811–817
  • Sigler K., Gille G., Vacata V., Stadler N., Höfer M. Inactivation of the plasma membrane ATPase of Schizosaccharomyces pombe by hydrogen peroxide and by the Fenton reagent (Fe2+/H2O2): nonradical versus radical-induced oxidation. Folia Microbiologica 1998; 43: 361–368
  • Gille G., Sigler K., Höfer M. Response of catalase activity and membrane fluidity of aerobically grown Schizosaccharomyces pombe and Saccharomyces cerevisiae to aeration and the presence of substrates. Journal of General Microbiology 1993; 139: 1627–1634
  • Goldstein S., Meyerstein D., Czapski G. The Fenton reagents. Free Radical Biology and Medicine 1993; 15: 435–445
  • Graf E., Mahoney J.R., Bryant R.G., Eaton J.W. Iron-catalyzed hydroxyl radical formation. Journal of Biological Chemistry 1984; 259: 3620–3624
  • Klebanoff S.J., Waltersdorph A.M., Michel B.R., Rosen H. Oxygen-based free radical generation by ferrous ions and deferrioxamine. Journal of Biological Chemistry 1989; 264: 19765–19771
  • Davies M.J., Dean R.T. Radical-Mediated Protein Oxidation: from Chemistry to Medicine. Oxford University Press, Oxford 1997
  • Samuni A., Aronovitch J., Godinger D., Chevion M., Czapski G. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. European Journal of Biochemistry 1983; 137: 119–124
  • Stadtman E.R. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radical Biology and Medicine 1990; 9: 315–325
  • Levine R.L., Oliver C.N., Fulks R.M., Stadtman E.R. Turnover of bacterial glutamine synthetase: correlation of structural and functional changes. Proceedings of the National Academy of Sciences of the USA 1981; 78: 2120–2124
  • Fucci L., Oliver C.N., Coon M.J., Stadtman E.R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implications in protein turnover and aging. Proceedings of the National Academy of Sciences of the USA 1983; 80: 1521–1525
  • Winterbourn C.C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters 1995; 82–83: 967–974
  • Wang Y., Floor E. Hydrogen peroxide inhibits the vacuolar H+-ATPase in brain synaptic vesicles at micromolar concentrations. Journal of Neurochemistry 1998; 70: 646–652
  • Gutteridge J.M., Wilkins S. Copper-salt dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochimica et Biophysica et Acta 1983; 759: 38–41
  • Wolff S.P., Dean R.T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochemical Journal 1986; 234: 399–403
  • Kocha T., Yamaguchi M., Ohtaki H., Fukuda T., Aoyagi T. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron- dependent hydroxyl radicals on the degradation of albumin. Biochimica et Biophysica Acta 1997; 1337: 319–326

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.