44
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Interactions of nitric oxide-derived reactive nitrogen species with peroxidases and lipoxygenases

, &
Pages 447-464 | Received 27 Feb 2001, Published online: 07 Jul 2009

References

  • Bonner F.T., Steadman G. The chemistry of nitric oxide and redox-related species. Methods in Nitric Oxide Research, M. Feelisch, J.S. Stammler. John Wiley and Sons, New York 1996; 3–18, In
  • Ignarro L.J., Fukuto J.M., Griscavage J.M., Rogers N.E., Burns R.E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from l-arginine. Proc. Natl. Acad. Sci. U.S.A 1993; 90: 8103–8107
  • Jiang Q., Hurst J.K. Relative chlorinating, nitrating, and oxidizing capabilities of neutrophils determined with phagocytosable probes. J. Biol. Chem. 1997; 272: 32767–32772
  • van der Vliet A., Eiserich J.P., Halliwell B., Cross C.E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite: a potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 1997; 272: 7617–7625
  • Huie R.E., Padmaja S. The reaction of nitric oxide with superoxide. Free Rad. Res. Commun. 1993; 18: 195–199
  • Goldstein S., Czapski G. The reaction of NO with O·-2 and HO·2: A pulse radiolysis study. Free Radic. Biol. Med. 1995; 19: 505–510
  • Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of endothelial-derived superoxide and nitric oxide. J. Biol. Chem. 1991; 266: 4244–4250
  • Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 1991; 288: 481–487
  • Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci., USA. 1990; 87: 1620–1624
  • Yermilov V., Yoshie Y., Rubio J., Ohshima H. Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxyguanine and base-propenal mediated by peroxynitrite. FEBS Lett. 1996; 399: 67–70
  • Kikugawa K., Hiramoto K., Tomiyama S., Asano Y. Beta-carotene effectively scavenges toxic nitrogen oxides: nitrogen dioxide and peroxynitrous acid. FEBS Lett. 1997; 404: 175–178
  • Wang P., Zweier J.L. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. J. Biol. Chem. 1996; 271: 29223–29230
  • Beckman J.S., Ischiropoulos H., Zhu L., van der Woerd M., Smith C., Che J., Harrison J., Martin J.C., Tsai M. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 1992; 298: 438–445
  • Alvarez B., Rubbo H., Kirk M., Barnes S., Freeman B.A., Radi R. Peroxynitrite-dependent tryptophan nitration. Chem. Res. Toxicol. 1996; 9: 390–396
  • Fukuyama N., Takebayashi Y., Hida M., Ishida H., Ichimori K., Nakazawa H. Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Rad. Biol. Med. 1997; 22: 771–774
  • Uppu M., Squadrito G.L., Pryor W.A. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch. Biochem. Biophys. 1996; 327: 335–343
  • Uppu R.M., Pryor W.A. Carbon dioxide catalysis of the reaction of peroxynitrite with ethyl acetoacetate: an example of aliphatic nitration by peroxynitrite. Biochem. Biophys. Res. Commun. 1996; 229: 764–769
  • Lymar S.V., Hurst J.K. Carbon dioxide: physiological catalysts for peroxynitrite-mediate cellular damage or cellular protectant?. Chem. Res. Toxicol. 1996; 9: 845–850
  • Denicola A., Freeman B.A., Trujillo M., Radi R. Peroxynitrite reaction with carbon dixide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch. Biochem. Biophys. 1996; 333: 49–58
  • Gow A.J., Duran D., Malcolm S., Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996; 385: 63–66
  • Boota A., Zar H., Kim Y.M., Johnson B., Pitt B., Davies P. IL-1β stimulates superoxide and delayed peroxynitrite production by pulmonary vascular smooth muscle cells. Am. J. Physiol. 1996; 271: L932–L938
  • Thom S.R., Xu Y.A., Ischiropoulos H. Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure. Chem. Res. Toxicol. 1997; 10: 1023–1031
  • Kooy N.W., Royall J.A. Agonist-induced peroxynitrite production from endothelial cells. Arch. Biochem. Biophys. 1994; 310: 352–359
  • Ischiropoulos H., Zhu L., Beckman J.S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 1992; 298: 446–451
  • Sudhakar S., Marla S.S., Lee J., Groves J.T. Peroxynitrite rapidly permeates phospholipid membranes. Proc. Natl. Acad. Sci. USA. 1997; 94: 14243–14248
  • Denicola A., Souza J.M., Radi R. Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. USA. 1998; 95: 3566–3571
  • Moshage H., Kok B., Huizenga J.R., Jansen P.L.M. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin. Chem. 1995; 1(6)892–896, (part 1)
  • Leone A.M., Francis P.L., Rhodes P., Moncada S. A rapid and simple method for the measurement of nitrite and nitrate in plasma by high performance capillary electrophoresis. Biochem. Biophys. Res. Commun. 1994; 200: 951–957
  • Gaston B., Reilly J., Drazen J.M., Fackler J., Ramdey P., Arnelle D., Mullins M.E., Sugarbaker D.J., Chee C., Singel D.J., Loscalzo J., Stamler J.S. Endogenous nitrogen oxides and bronchodilator s-nitrosothiols in human airways. Proc. Natl. Acad. Sci. USA. 1993; 90: 10957–10961
  • Green L.C., Wagner D.A., Glogowski J., Skipper P.L. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 1982; 126: 131–138
  • Tannenbaum S.R., Weisman M., Fett D. The effect of nitrate intake on nitrite formation in human saliva. Fd Cosmet. Toxicol. 1976; 14: 549–552
  • Knowles M.E., McWeeny D.J., Couchman L., Thorogood M. Interaction of nitrite with proteins at gastric pH. Nature 1974; 247: 288–289
  • Cech P., Lehrer R.I. Phagolysosomal pH of human neutrophils. Blood 1984; 63: 88–95
  • Stuehr D.J., Griffith O.W. Mammalian nitric oxide synthases. Adv. Enzymol. 1992; 287–346
  • Pollock J.S., Förstermann U., Mitchell J.A., Warner T.D., Schmidt H.H.H.W., Nakane M., Murad F. Purification and characterisation of particulate EDRF synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 1991; 88: 10480–10484
  • Wilcox C.S., Welch W.J., Murad F., Gross S.S., Taylor G. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc. Natl. Acad. Aci. USA 1992; 89: 11993–11997
  • Schmidt H.H., Warner T.D., Ishii K., Scheng H., Murad F. Insulin secretion from β-pancreatic cells caused by l-arginine-derived nitrogen oxides. Science 1992; 255: 721–723
  • Nakane M., Schmidt H.H., Pollack J.S., Förstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993; 316: 175–180
  • Kobzik L., Bredt D.S., Lowenstein C.J., Drazen J., Gaston B., Sugarbaker D., Stamler J.S. Nitric oxide synthase in human and rate lung: immunocytochemical and immunohistochemical localization. Am. J. Respir. Cell Mol. Biol. 1993; 9: 371–377
  • Schmidt H.H., Gagne G.D., Nakane M., Pollock J.S., Miler M.F., Murad F. Mapping of neural nitric oxide synthase in the rat suggests frequent colocalization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction. J. Histochem. Cytochem. 1992; 40: 1439–1456
  • Hevel J.M., White K.A., Marletta M.A. Purification of the inducible murine macrophage nitric oxide synthase. J. Biol. Chem. 1991; 266: 22789–22791
  • Clementi E., Brown G.C., Feelisch M., Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of s-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA. 1998; 95: 7631–7636
  • Hibbs J.B., Jr, Taintor R.R., Jr, Vavrin Z., Jr, Rachlin E.M., Jr. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 1988; 157: 87–94
  • Lancaster J.R., Hibbs J.B. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. 1990; 87: 1223–1227
  • Stadler J., Billiar T.R., Curran R.D., Stuehr D.J., Ochoa J.B., Simmons R.L. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol. 1991; 260: C910–C916
  • Curran R.D., Ferrari F.K., Kispert P.H., Stadler J., Stuehr D.H., Simmons R.L., Billiar T.R. Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J. 1991; 5: 2085–2092
  • Kwon N.S., Stuehr D.H., Nathan C.F. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med. 1991; 174: 761–767
  • Lepovire M., Flaman J.M., Henry Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem. 1992; 267: 22994–23000
  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992; 6: 3051–3064
  • Palmer R.M.J., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526
  • Garbers D.L., Lowe D.G. Guanylyl cyclase receptors. J. Biol. Chem. 1994; 269: 30741–30744
  • Butt E., Geiger J., Jarchau T., Lohmann S.M., Walter U. The cGMP-dependent protein kinase-gene, protein and function. Neurochem. Res. 1993; 18: 27–42
  • Moncada S., Higgs E.A. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur. J. Clin. Invest. 1991; 21: 361–374
  • Arnold W.P., Mittal C.K., Katsuki S., Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA. 1977; 74: 3203–3207
  • Sundrani R., Easington C.R., Mattoo A., Parrillo J.E., Hollenberg S.M. Nitric oxide synthase inhibition increases venular leukocyte rolling and adhesion in septic rats. Crit. Care. Med. 2000; 28: 2898–2903
  • Mitsuhata H., Shimizu R., Yokoyama M.M. Role of nitric oxide in anaphylactic shock. J. Clin. Immunol. 1995; 15: 277–283
  • Fagan K.A., McMurtry I., Rodman D.M. Nitric oxide synthase in pulmonary hypertension: lessons from knockout mice. Physiol. Res. 2000; 49: 539–548
  • Schmidt R.J., Baylis C. Total nitric oxide production is low in patients with chronic renal disease. Kidney Int. 2000; 58: 1261–1266
  • Jessup W., Mohr D., Gieseg S.P., Dean R.T., Stocker R. The participation of nitric oxide in cell free and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim. Biophys. Acta. 1992; 1180: 73–82
  • Pasquet J.P., Zou M.H., Ullrich V. Peroxynitrite inhibition of nitric oxide synthases. Biochimie 1996; 78: 785–791
  • Eiserich J.P., Patel R.P., O'Donnell V.B. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Molec. Aspects Med. 1998; 19: 221–357
  • Darley-Usmar V.M., Hogg N., O'Leary V.J., Wilson M.T., Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low-density lipoprotein. Free Radic. Res. Comm. 1992; 17: 9–20
  • Patel R.P., Levonen A., Crawford J.H., Darley-Usmar V.M. Mechanisms of the pro- and antioxidant actions of nitric oxide in atherosclerosis. Cardiovasc. Res. 2000; 47: 465–474
  • Halliwell B., Hu M.L., Louie S., Duvall T.R., Tarkington B.K., Motchnik P., Cross C.E. Interaction of nitrogen dioxide with human plasma. FEBS Lett. 1992; 313: 62–66
  • Hess J.R., MacDonald V.W., Brinkley W.W. Systemic and pulmonary hypertension after resuscitation with cell free hemoglobin. J. Appl. Physiol. 1993; 74: 1769–1778
  • Eich R.F., Li T., Lemon D.D., Doherty D.H., Curry S.R., Aitken J.F., Matthews A.J., Johnson K.A., Smith R.D., Philips, Jnr G.N., Olson, Jnr J.S. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 1996; 35: 6976–6983
  • Lancaster J.R. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl. Acad. Sci. USA 1994; 91: 8137–8141
  • Liao J.C., Hein T.W., Vaughn M.W., Huang K-T., Kuo L. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl. Acad. Sci. USA 1999; 96: 8757–8761
  • Liu X., Miller M.J.S., Joshi M.S., Sadowska-Krowicka H., Clark D., Lancaster J.R. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 1998; 273: 18709–18713
  • Pawloski J.R., Hess D.T., Stamler J.S. Export by red blood cells of nitric oxide bioactivity. Nature 2001; 409: 622–626
  • Flögel U., Merx M.W., Gödecke A., Decking U.K.M., Schrader J. Myoglobin: A scavenger of bioactive NO. Proc. Natl. Acad. Sci. USA 2001; 98: 735–740
  • Ignarro L.J., Buga G.M., Byrns R.E., Wood K.S., Chaudhri G. Endothelium-derived relaxing factor and nitric oxide possess identical pharmacologic properties as relaxants of bovine arterial and venous smooth muscle. J. Pharm. Exp. Thera. 1988; 246: 218–226
  • Kelm M., Schrader J. Control of coronary vascular tone by nitric oxide. Circ. Res. 1990; 66: 1561–1575
  • Verbeuren T.J., Jordaens F.H., van Hove C.E., van Hoydonck A.E., Herman A.G. Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur. J. Pharm. 1990; 191: 173–184
  • Minor R.L., Myers P.R., Guerra R., Bates J.N., Harrison D.G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J. Clin. Invest. 1990; 86: 2109–2116
  • White C.R., Brock T.A., Chang L.Y., Crapo J., Briscoe P., Ku D., Bradley W.A., Gianturco S.H., Gore J., Freeman B., Tarpey M.M. Superoxide and Peroxynitrite in Atherosclerosis. Proc. Natl. Acad. Sci. USA 1994; 91: 1044–1048
  • O'Donnell V.B., Coles B., Lewis M.J., Crews B.C., Marnett L.J., Freeman B.A. Catalytic consumption of nitric oxide by PGHS-1 regulates the anti-aggregatory effects of nitric oxide during platelet aggregation. J. Biol. Chem. 2000; 275: 38239–38244
  • O'Donnell V.B., Taylor K.B., Parthasarathy S., Kühn H., Koesling D., Freibe A., Bloodsworth A., Darley-Usmar V.M., Freeman B.A. 15-lipoxygenase catalytically consumes nitric oxide and impairs activation of soluble guanylate cyclase. J. Biol. Chem. 1999; 274: 20083–20091
  • Abu-Soud H.M., Hazen S.L. Nitric oxide is a substrate for mammalian peroxidases. J. Biol. Chem. 2000; 275: 37524–37532
  • Glover R.E., Koshkin V., Dunford H.B., Mason R.P. The reaction rates of NO with horseradish. Nitric Oxide 1999; 3(6)439–444
  • Needleman P., Turk J., Jakschik B.A., Morrison A.R., Lefkowith J.B. Arachidonic acid metabolism. Ann. Rev. Biochem. 1986; 55: 69–102
  • Smith W.L., De Witt D.L. Prostaglandin endoperoxide H synthases-1 and -2. Adv. Immunol. 1996; 62: 167–215
  • Marnett L.J., Maddipati K.R. Peroxidases in Chemistry and Biology, J. Everse, K. Everse, M. Grisham. CRC Press, Boca Raton, FL 1991; I.: 293–334, In
  • Smith W.L., Marnett L.J. Prostaglandin endoperoxide synthase: structure and catalysis. Biochim. Biophys. Acta. 1991; 1083: 1–17
  • Akarasereenont P., Mitchell J.A., Bakhle Y.S., Thiemermann C., Vane J.R. Comparison of the induction of cyclo-oxygenase and nitric oxide synthase by endotoxin in endothelial cells and macrophages. Eur. J. Pharmacol. 1995; 273: 121–128
  • Vane J.R., Mitchell J.A., Appleton I., Tomlinson A., Bishop-Bailey D., Croxtall J., Willoughby D.A. Inducible forms of cyclo-oxygenase and nitric oxide synthase in inflammation by nitric oxide. Proc. Natl. Acad. Sci. USA 1994; 91: 2046–2050
  • Corbett J.A., Kwon G., Turk J., McDaniel M.L. IL-1β induces the co-expression of both nitric oxide synthase and cyclo-oxygenase by islets of Langerhans: activation of cyclo-oxygenase by nitric oxide. Biochemistry 1993; 32: 13767–13770
  • Clancy R., Varenika B., Huang W., Ballou L., Attur M., Amin A.R., Abramson S.B. Nitric oxide synthase/COX cross-talk: nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. J. Immunol. 2000; 165: 1582–1587
  • Salvemini D., Seibert K., Masferrer J.L., Seibert K., Currie M.G., Needleman P. Nitric oxide activates cyclo-oxygenase enzymes. Proc. Natl. Acad. Sci. USA 1994; 90: 7240–7244
  • Curtis J.F., Reddy N.G., Mason R.P., Kalyanaraman B., Eling T.E. Nitric oxide: a prostaglandin H synthase 1 and 2 reducing cosubstrate that does not stimulate cyclo-oxygenase activity or prostaglandin H synthase expression in murine macrophages. Arch. Biochem. Biophys. 1996; 335: 369–376
  • Stadler J., Harbrecht B.G., Di Silvio M., Curran R.D., Jordan M.L., Simmons R.L., Billiar T.R. Endogenous nitric oxide inhibits the synthesis of cyclo-oxygenase products and interleukin-6 by rat Kupffer cells. J. Leuk. Biol. 1993; 53: 165–172
  • Davidge S.T., Baker P.N., McLaughlin M.K., Roberts J.M. Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ. Res. 1995; 77: 274–283
  • Salvemini D., Currie M.G., Mollace V. Nitric oxide-mediated cyclooxygenase activation. A key event in the antiplatelet effects of nitrovasodilators. J. Clin. Invest. 1996; 97: 2562–2568
  • Salvemini D., Misko T.P., Masferrer J.L., Seibert K., Currie M.G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl. Acad. Sci. USA 1993; 90: 7240–7244
  • Manfield L., Jang D., Murrell G.A. Nitric oxide enhances cyclooxygenase activity in articular cartilage. Inflammation Res. 1996; 45: 254–258
  • Nakatsuka M., Osawa Y. Selective inhibition of the 12-lipoxygenase pathway of arachidonic acid metabolism by l-arginine or sodium nitroprusside in intact human platelets. Biochem. Biophys. Res. Comm. 1994; 200: 1630–1634
  • Minghetti L., Polazzi E., Nicolini A., Creminon C., Levi G. Interferon-gamma and nitric oxide down-regulate lipopolysaccharide-induced prostanoid production in cultured rat microglial cells by inhibiting cyclooxygenase-2 expression. J. Neurochem. 1996; 66: 1963–1970
  • Habib A., Bernard C., Lebret M., Creminon C., Esposito B., Tedgui A., Maclouf J. Regulation of the expression of cyclooxygenase-2 by nitric oxide in rat peritoneal macrophages. J. Immunol. 1997; 158: 3845–3851
  • Landino L.M., Crews B.C., Timmons M.D., Morrow J.D., Marnett L.J. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin bio-synthesis. Proc. Natl. Acad. Sci. USA 1996; 93: 15069–15074
  • Tsai A.L., Wei C., Kulmacz R.J. Interaction between nitric oxide and prostaglandin H synthase. Arch. Biochem. Biophys. 1994; 313: 367–372
  • Dietz R., Nastainczyk W., Ruf H.H. Higher oxidation states of prostaglandin H synthase. Rapid electronic spectroscopy detected two spectral intermediates during the peroxidase reaction with prostaglandin G2. Eur. J. Biochem. 1988; 171: 321–328
  • Karthein R., Dietz R., Nastainczyk W., Ruf H.H. Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction. Eur. J. Biochem. 1988; 171: 313–320
  • Tsai A.I., Palmer G., Xiao G., Swinney D.C., Kulmacz R.J. Structural characterization of arachidonyl radicals formed by prostaglandin H synthase-2 and prostaglandin H synthase-1 reconstituted with mangano protoporphyrin IX. J. Biol. Chem. 1998; 273: 3888–3894
  • Eiserich J.P., Butler J., van der Vliet A., Cross C.E., Halliwell B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem. J. 1995; 310: 745–749
  • Gunther M.R., Hsi L.C., Curtis J.F., Gierse J.K., Marnett L.J., Eling T.E., Mason R.P. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosine formation. J. Biol. Chem. 1997; 272: 17086–17090
  • Goodwin D.C., Gunther M.R., Hsi L.C., Crews B.C., Eling T.E., Mason R.P., Marnett L.J. Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover: detection of the radical derivative of tyrosine 385. J. Biol. Chem. 1998; 273: 8903–8909
  • Upmacis R.K., Deeb R.S., Hajjar D.P. Regulation of prostaglandin H2 synthase activity by nitrogen oxides. Biochemistry 1999; 38: 12505–12513
  • Ma Z., Ramanadham S., Corbett J.A., Bohrer A., Gross R.W., McDaniel M.L., Turk J. Interleukin-1 enhances pancreatic islet arachidonic acid 12-lipoxygenase product generation by increasing substrate availability through a nitric oxide-dependent mechanism. J. Biol. Chem. 1996; 271: 1029–1042
  • Gassama-Diagne A., Simon M.F., Chap H. Inhibition of platelet arachidonic acid liberation by endothelium-derived relaxing factor (EDRF) as studied with sin-1, a nitric oxide generating drug. Evidence for calcium-dependent and calcium-independent mechanisms. J. Lipid Mediators 1992; 5: 61–75
  • Ford-Hutchinson A.W., Gressner M., Young R.N. 5-lipoxygenase. Ann. Rev. Biochem. 1994; 63: 383–417
  • Hamberg M., Samuellsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc. Natl. Acad. Sci. USA 1974; 71: 3400–3404
  • Nyby G.M., Morrow J.D., Roberts L.J., Lakkis F.G., Baddr K.F. Induction of 15-lipoxygenase by IL-13 in human blood monocytes. J. Biol. Chem. 1994; 269: 27631–27634
  • Conrad D.J., Kühn H., Mulkins M., Highland E., Sigal E. Specific inflammatory cytokines regulates expression of human monocyte 15-lipoxygenase. Proc. Natl. Acad. Sci., USA 1992; 89: 217–221
  • Kühn H., Belkner J., Zaiss S., Fährenklemper T., Wohfeil S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J. Exp. Med. 1994; 179: 1903–1911
  • Yla-Herttuala S., Rosenfeld M.E., Parthasarathy S., Glass C.K., Sigal E., Sarkioia T., Witztum J.T., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J. Clin. Invest. 1991; 87: 1146–1152
  • Folcik V.A., Nivar-Aristy R.A., Krajewski L.P., Cathcart M.K. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J. Clin. Invest. 1995; 96: 504–510
  • Belkner J., Stender H., Kühn H. The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J. Biol. Chem. 1998; 273: 23225–23232
  • Sendobry S.M., Cornicelli J.A., Welch K., Tait B., Trivedi B.K., Colbry N., Dyer R.D., Feinmark S.J., Daughtery A. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br. J. Pharmacol. 1997; 120: 1199–1206
  • Cyrus T., Witztum J., Rader D.J., Tangirala R., Fazio S., Linton M.F., Funk C.D. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J. Clin. Invest. 1999; 103: 1597–1604
  • Bleich D., Chen B., Zipser D., Sun C.D., Nadler J.L. Resistance to type 1 diabetes induction in 12-lipoxygenase knockout mice. J. Clin. Invest. 1999; 103: 1431–1436
  • Nelson M.J. The nitric oxide complex of ferrous soybean lipoxygenase-1. J. Biol. Chem. 1987; 262: 12137–12142
  • Galpin J.R., Veldink G.A., Vliegenthart J.F.G., Boldingh J. The interaction of nitric oxide with soybean lipoxygenase-1. Biochim. Biophys. Acta. 1978; 536: 356–362
  • Wiesner R., Rathmann J., Holshutter H.G., Stosser R., Mader K., Nolting H., Kühn H. Nitric oxide oxidises a ferrous mammalian lipoxygenase to a pre-activated ferric species. FEBS Lett. 1996; 389: 229–232
  • Holzhutter H.G., Wiesner R., Rathmann J., Stosser R., Kühn H. A kinetic model for the interaction of nitric oxide with a mammalian lipoxygenase. Eur. J. Biochem. 1997; 245(3)608–616
  • Rubbo H., Parthasarathy S., Barnes S., Kirk M., Kalyanaraman B., Freeman B.A. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidised lipid derivatives. Arch. Biochem. Biophys. 1995; 324(1)15–25
  • Coffey M.J., Natarajan R., Chumley P.H., Coles B., Thimmalapura P.R., Nowell M., Kühn H., Lewis M.J., Freeman B.A., O'Donnell V.B. Catalytic consumption of nitric oxide by 1Z/15-lipoxygenase: inhibition of soluble guanylate cyclase activation. Proc. Natl. Acad. Sci. USA 2001; 98: 8006–8011
  • Nauseef W.M., Malech H.L. Analysis of the peptide subunits of human neutrophil myeloperoxidase. Blood 1986; 67: 1504–1507
  • Klebanoff S.J. Iodination of bacteria: a bactericidal mechanism. J. Exp. Med. 1967; 126: 1063–1078
  • Lampert M.B., Weiss S.J. The chlorinating potential of the human monocyte. Blood 1983; 62: 645–651
  • Shibata H., Kono Y., Yamashita S., Sawa Y., Ochiai H., Tanaka K. Degradation of chlorophyll by nitrogen dioxide generated from nitrite by the peroxidase reaction. Biochim. Biophys. Acta. 1995; 1230: 45–50
  • Sampson J.B., Ye Y., Rosen H., Beckman J.S. Myeloperoxidase and horseradish peroxidase catalyse tyrosine nitration in proteins from nitrite and hydrogen peroxide. Arch. Biochem. Biophys. 1998; 356: 207–213
  • Eiserich J.P., Hristova M., Cross C.E., Jones A.D., Freeman B.A., Halliwell B., van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 1998; 391: 393–397
  • Eiserich J.P., Cross C.E., Jones A.D., Halliwell B., Van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid: a novel mechanism for nitric oxide-mediated protein modification. J. Biol. Chem. 1996; 271: 19199–19208
  • Burner U., Furtmuller P.G., Kettle A.J., Koppenol W.H., Oblinger C. Mechanism of reaction of myeloperoxidase with nitrite. J. Biol. Chem. 2000; 275: 20597–20601
  • Heinecke J.W., Li W., Daehnke H.L., Goldstein J.A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J. Biol. Chem. 1993; 268: 4069–4077
  • Althaus J.S., Schmidt K.R., Fountain S.T., Tseng M.T., Carroll R.T., Galatsis P., Hall E.D. LC-MS/MS detection of peroxynitrite-derived 3-nitrotyrosine in rat microvessels. Free Radic. Biol. Med. 2000; 29: 1085–1095
  • Kooy N.W., Lewis S.J., Royall J.A., Ye Y.Z., Kelly D.R., Beckman J.S. Extensive tyrosine nitration in human myocardial inflammation. Evidence for the presence of peroxynitrite. Crit. Care. Med. 1997; 25: 812–819
  • Hazen S.L., Zhang R., Shen Z., Wu W., Podrez E.A., MacPherson J.C., Scmitt D., Mitra S.N., Mukhopadhyay C., Chen Y., Cohen P.A., Hoff H.F., Abu-Soud H.M. Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation in vivo. Circ. Res. 1999; 85: 950–958
  • Floris R., Piersma S.R., Yang G., Jones P., Wever R. Interaction of myeloperoxidase with peroxynitrite. Eur. J. Biochem. 1993; 215: 767–775
  • Ischiropoulous H., Nelson J., Duran D., Al-Mehdi A. Reactions of nitric oxide and peroxynitrite with organic molecules and ferrihorseradish peroxidase: interference with the determination of hydrogen peroxide. Free Radic. Biol. Med. 1996; 20: 373–381
  • Abu-Soud H.M., Hazen S.L. Nitric oxide modulates the catalytic activity of myeloperoxidase. J. Biol. Chem. 2000; 275: 5425–5430
  • Scott M., Lubin B., Zuo L., Kuypers F. Erythrocyte defense against hydrogen peroxide — preeminent importance of catalase. J. Lab. Clin. Med. 1991; 118: 7–16
  • Kim Y.S., Han S. Superoxide reactivates nitric oxide-inhibited catalase. Biol. Chem. 2000; 381: 1269–1271
  • Matoba T., Shimokawa H., Nakashima M., Hirakawa Y., Mukai Y., Hirano K., Kanaide H., Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J. Clin. Invest. 2000; 106: 1521–1530
  • Li Y., Severn A., Rogers M.V., Palmer R.M., Moncada S., Liew F.Y. Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages. Eur. J. Immunol. 1992; 2: 441–446
  • Muzakova V., Kandar R., Vojtisek P., Skalicky J., Cervinkova Z. Selective antioxidant enzymes during ischemia/reperfusion in myocardial infarction. Physiol. Res. 2000; 4: 315–322
  • Freedman J.E., Frei B., Welch G.N., Loscalzo J. Glutathione peroxidase potentiates the inhibition of platelet function by s-nitrosothiols. J. Clin. Invest. 1995; 96: 394–400
  • Hou Y., Guo Z., Li J., Wang P.G. Seleno compounds and glutathione peroxidase catalyzed decomposition of s-nitrosothiols. Biochem. Biophys. Res. Comms. 1996; 228: 88–93
  • Briviba K., Kissner R., Koppenol W.H., Sies H. Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Chem. Res. Toxicol. 1998; 11: 1398–1401
  • Sies H., Sharove V.S., Klotz L.O., Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductases. J. Biol. Chem. 1997; 272: 27812–27817
  • Padmaja S., Squadrito G.L., Pryor W.A. Inactivation of glutathione peroxidase by peroxynitrite. Arch. Biochem. Biophys. 1998; 349: 1–6
  • Asahi M., Fujii J., Suzuki K., Seo H.G., Kuzuya T., Hori M., Tada M., Fujii S., Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide: implications for cytotoxicity. J. Biol. Chem. 1995; 270: 21035–21039
  • Folcik V.A., Nivar-Aristy R.A., Krajewski L.P., Cathcart M.K. Lipoxygenase contributes to the oxidation of lipids inhuman atheroslerotic plaques. J. Clin. Invest. 1995; 96: 504–510
  • Hartner A., Goppelt-Struebe M., Hilgers K.F. Co-ordinated expression of cycloxygenase-2 and renin in the rat kidney in renovascular hypertension. Hypertension 1998; 31: 201–205
  • Stern N., Kisch E.S., Knoll E. Platelet lipoxygenase in spontaneously hypertensive rats. Hypertension 1996; 27: 1149–1152
  • Chang W.C., Su G.W. Increase in 12-lipoxygenase activity in platelets of spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 1985; 127: 642–648
  • Sasaki M., Hori M.T., Hino T., Golub M.S., Tuck M.L. Elevated 12-lipoxygenase in the spontaneously hypertensive rat. Am. J. Hypertension 1997; 10: 371–378
  • Taddei S., Virdis A., Ghiadoni L., Magagna A., Salvetti A. Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 1997; 29: 274–279
  • Noon J.P., Walker B.R., Hand M.F., Webb D.J. Impairment of forearm vasodilation to acetylcholine in hypercholesterolemia is reversed by aspirin. Cardiovasc. Res. 1998; 38: 480–484
  • Dellipizzi A., Guan H., Tong X., Takizawa H., Nasjletti A. Lipoxygenase-dependent mechanisms in hypertension. Clin. Exp. Hypertens. 2000; 22: 181–192
  • Stern N., Nozawa K., Golub M., Eggena P., Knoll E., Tuck M.L. The lipoxygenase inhibitor phenidone is a potent hypotensive agent in the spontaneously hypertensive rat. Am. J. Hypertens. 1993; 6: 52–58
  • Nozawa K., Tuck M.L., Golub M., Eggena P., Nadler J.L., Stern N. Inhibition of lipoxygenase pathway reduces blood pressure in renovascular hypertensive rats. Am. J. Physiol. 1990; 259: H1774–H1780
  • Marnett L.J., Wright T.L., Crews B.C., Tannenbaum S.R., Morrow J.D. Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric oxide synthase. J. Biol. Chem. 2000; 275: 13427–13430
  • Leeuwenburgh C., Hardy M.M., Hazen S.L., Wagner P., Oh-ishi S., Steinbrecher U.P., Heinecke J.W. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem. 1997; 272: 1433–1436
  • Beckman J.S., Ye Y., Anderson P.G., Chen J., Accavitti M.A., Tarpey M.M., White C.R. Extensive nitration of protein tyrosine residues in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe-Seyler 1994; 375: 81–88
  • Daugherty A., Dunn J.L., Rateri D.L., Heinecke J.W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 1994; 94: 437–444
  • Buttery L.D.K., Springall D.R., Chester A.H., Evens T.J., Standfield N., Parvums D.V., Yacoub M.H., Polak J.M. Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Laboratory Investigation 1996; 75: 77–85
  • Brennan M.L., Anderson M.M., Shih D.M., Qu X-D., Wang X., Mehta A.C., Lim L.L., Shi W., Hazen S.L., Jacob J.S., Crowley J.R., Heinecke J.W., Lusis A.J. Increased atherosclerosis in myeloperoxidase deficient mice. J. Clin. Invest. 2001; 107: 419–430
  • Farrell A.J., Blake D.R., Palmer R.M.J., Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 1992; 51: 1219–1222
  • Haddad I.Y., Pataki G., Hu P., Galliani C., Beckman J.S., Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J. Clin. Invest. 1994; 96: 2407–2413
  • Kooy N.W., Royall J.A., Ye Y.Z., Kelly D.R., Beckman J.S. Evidence for in vivo peroxynitrite production in human acute lung injury. Am. J. Respir. Crit. Care Med. 1995; 151: 1250–1254
  • van der Veen R.C., Hinton D.R., Incardonna F., Hofman F.M. Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J. Neuroimmunol. 1997; 77: 1–7
  • Bagasra O., Michaels F.H., Zheng Y.M., Bobroski L.E., Spitsin S.V., Fu Z.F., Tawadros R., Koprowski H. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 1995; 92: 12041–12045
  • Nagra R.M., Becher B., Tourtellotte W.W., Antel J.P., Gold D., Paladino T., Smith R.A., Nelson J.R., Reynolds W.F. Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J. Neuroimmunol. 1997; 78: 97–107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.