29
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Role of membrane charge and semiquinone structure on naphthosemiquinone derivatives and 1,4-benzosemiquinone disproportionation and membrane-buffer distribution coefficients

, , , &
Pages 529-541 | Received 15 Jan 2001, Published online: 07 Jul 2009

References

  • Ludewig M. Toxic quinones produced by mammalian defense cells—causative agents for autoimmune reactions?. Medical Hypotheses 1993; 41: 375–377
  • Sebban P., Maroti P., Hanson D.K. Electron and proton transfer to the quinones in bacterial photosynthetic reaction centers: insight from combined approaches of molecular genetics and biophysics. Biochimie 1995; 77: 677–694
  • Ross D., Beall H., Traver R.D., Siegel D., Phillips R.M., Gibson N.W. Bioactivation of quinones by DT-diaphorase, molecular, biochemical, and chemical studies. Oncology Research 1994; 6: 493–500
  • Workman P. Bioreductive mechanisms. International Journal of Radiation Oncology, Biology, Physics 1992; 22: 631–637
  • Dix T.A., Aikens J. Mechanisms and biological relevance of lipid peroxidation initiation. Chemical Research in Toxicology 1993; 6: 2–18
  • Haber F., Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London (A) 1934; 147: 332–342
  • Smotkin E.S., Moy F.T., Plachy W.Z. Dioxygen solubility in aqueous phosphatidylcholine dispersions. Biochimica et Biophysica Acta 1991; 1061: 33–38
  • Roginsky V.A., Barsukova T.K., Bruchelt G., Stegmann H.B. Kinetics of redox interaction between substituted 1,4-benzoquinones and ascorbate under aerobic conditions: critical phenomena. Free Radical Research 1998; 29: 115–125
  • Graham D.G., Tiffany S.M., Bell W.R., Gutknecht W.F. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Molecular Pharmacology 1978; 14: 644–653
  • Eyer P. Effects of superoxide dismutase on the autoxidation of 1,4-hydroquinone. Chemico-Biological Interactions 1991; 80: 159–176
  • Zhang L., Bandy B., Davison A.J. Effects of metals, ligands and antioxidants on the reaction of oxygen with 1,2,4-benzenetriol. Free Radical Biology and Medicine 1996; 20: 495–505
  • Roginsky V., Barsukova T. Kinetics of oxidation of hydroquinones by molecular oxygen. Effect of superoxide dismutase. Journal of the Chemical Society, Perkin Transactions 2 2000; 1575–1582
  • Roginsky V.A., Barsukva T.K., Bruchelt G., Stegmann H. The oxidation of catecholamines and 6-hydroxy-dopamine by molecular oxygen: effect of ascorbate. Zeitschrift fur Naturforschung C 1997; 52: 380–390
  • Munday R. Autoxidation of naphthohydroquinones: effects of metals, chelating agents, and superoxide dismutase. Free Radical Biology and Medicine 1997; 22: 689–695
  • Alegría A.E., Rodriguez M.S., Hernandez J. Semiquinones derived from anthraquinone-containing antitumor drugs can partition into lecithin bilayers. Biochimica et Biophysica Acta 1990; 1035: 51–55
  • Alegría A.E., Santiago G. Adriamycin and daunomycin semiquinones membrane/buffer partition constants using the spin-broadening technique. Archives of Biochemistry and Biophysics 1997; 346: 91–95
  • Alegría A.E., Rivera S., Hernandez M., Ufret R., Morales M. Membrane-buffer partition coefficients of semiquinones using the spin-broadening technique. Journal of the Chemical Society, Faraday Transactions 1993; 89: 3773–3777
  • Arcamone F., Cassinelli G. Biosynthetic anthracyclines. Current Medicinal Chemistry 1998; 5: 391–419
  • Aikawa M., Kamanura K., Shiraishi S., Matsumoto Y., Arwati H., Torii M., Ito Y., Takeuchi T., Tandler B. Membrane knobs of unfixed Plasmodium falciparum infected erythrocytes: new findings as revealed by atomic force microscopy and surface potential spectroscopy. Experimental Parasitology 1996; 84: 339–343
  • Ahmed K., Nakagawa T., Nakano Y., Martinez G., Ichinose A., Zheng C.H., Akaki M., Aikawa M., Nagatake T. Attachment of Moraxella catarrhalis occurs to the positively charged domains of pharyngeal epithelial cells. Microbial Pathogenesis 2000; 28: 203–209
  • Duling D.R. Simulation of multiple isotropic spin-trap EPR spectra. Journal of Magnetic Resonance Series B 1994; 104: 105–110
  • Pedersen J.A. Handbook of EPR Spectra from Quinones and Quinols. CRC Press, Boca Raton 1985
  • Nagle J.F., Wilkinson D.A. Lecithin bilayers density measurement and molecular interactions. Biophysical Journal 1978; 23: 159–175
  • Knoll W. Volume determination of deuterated dimyristoyl lecitin by mass and scattering length densitometry. Chemistry and Physics of Lipids 1981; 28: 337–346
  • Alegría A.E., Garcia C., Santiago G., Collazo G., Morant J. Intramolecular hydrogen bonding in hydroxylated semiquinones inhibits semiquinone-Mg2+ complex formation. Journal of the Chemical Society Perkin Transactions 2 2000; 1569–1573
  • Alegría A.E., Lópes M., Guevara N. Thermodynamics of semiquinone disproportionation in aqueous buffer. Journal of the Chemical Society, Faraday Transactions 1996; 92: 4965–4968
  • Ansell M.F., Nash B.W., Wilson D.A. Preparation of p-benzoquinones. Journal of the Chemical Society 1963; 3028–3036
  • Caffrey M., Feigenson G.W. Influence of metal ions on the phase properties of phosphatidic acid in combination with natural and synthetic phosphatidylcholines: an X-ray diffraction study using synchrotron radiation. Biochemistry 1984; 23: 323–331
  • Kinkaid A., Othman R., Voysey J., Wilton D.C. Phospholipase D and phosphatidic acid enhance the hydrolysis of phospholipids in vesicles and in cell membranes by human secreted phospholipase A2. Biochimica et Biophysica Acta 1998; 1390: 173–185
  • Mitrakos P., Macdonald P.M. Nucleotide chain length and the morphology of complexes with cationic amphiphiles: (31)P-NMR observations. Biochimica et Biophysica Acta 2000; 1463: 355–373
  • J. Rosing, H. Speijer, R.F. Zwaal. Prothrombin activation on phospholipid membranes with positive electrostatic potential. Biochemistry 1988; 27: 8–11
  • Grivet J. Accurate numerical approximation to the Gauss-Lorentz lineshape. Journal of Magnetic Resonance 1997; 125: 102–106
  • Land E.J., Mukherjee T., Swallow J. Reduction of naphthazarin molecule as studied by pulse radiolysis. Journal of the Chemical Society, Faraday Transactions 1983; 79: 391–404
  • Bailey S.I., Ritchie I.M. A cyclic voltammetric study of the aqueous electrochemistry of some quinones. Electrochimica Acta 1985; 30: 3–12
  • Mukherjee T., Swallow A.J., Guyan P.M., Bruce J.M. One- and two-electron reduction or quinizarin and 5-methoxyquinizarin: a pulse radiolysis study. Journal of the Chemical Society, Faraday Transactions 1990; 86: 1483–1491
  • Richter H.W. Pulse radiolysis of 4-tert-butyl-1,2-dihydroxybenzene and 4-tert-butyl-1,2-quinone. Journal of Physical Chemistry 1979; 83: 1123–1129
  • Kalyanaraman B. Characterization of o-semiquinone radicals in biological systems. Methods in Enzymology 1990; 186: 333–343
  • Smejtek P., Wang S. Adsorption to dipalmitoylphosphatidylcholine membranes in gel and fluid state: pentachlorophenolate, dipicrylamine, and tetraphenylborate. Biophysical Journal 1990; 58: 1285–1294
  • Flewelling R.F., Hubbell W.L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophysical Journal 1986; 49: 541–552
  • Brock W., Stark G., Jordan P.C. A laser-temperature-jump method for the study of the rate of transfer of hydrophobic ions and carriers across the interface of thin lipid membranes. Biophysical Chemistry 1981; 13: 329–348
  • Bailey S.I., Ritchie I.M. A cyclic voltammetric study of the aqueous electrochemistry of some quinones. Electrochimica Acta 1985; 30: 3–12
  • Land E.J., Mukherjee T., Swallow A.J., Bruce J.M. Reduction of the naphthazarin molecule as studied by pulse radiolysis. Part 2. Second one-electron step. Journal of the Chemical Society, Faraday Transactions 1983; 179: 405–415
  • Havelkova L., Bartusek M. Complexes of boric acid with o-diphenols. Collection of Czechoslovak Chemical Communications 1968; 33: 4188–4197
  • Kiss T., Sorago I., Martin R.B. Complexes of 3,4-dihydroxyphenyl derivates. 9. Al3+ binding to catecholamines and tiron. Journal of the American Chemical Society 1989; 111: 3611–3614
  • Liebler D.C., Burr J.A. Antioxidant reactions of alpha-tocopherolhydroquinone. Lipids 2000; 35: 1045–1047
  • Soucek P., Ivan G., Pavel S. Effect of the microsomal system on interconversions between hydroquinone, benzoquinone, oxygen activation, and lipid peroxidation. Chemico-Biological Interactions 2000; 126: 45–61
  • Cadenas E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochemical Pharmacology 1995; 49: 127–140
  • Alegría A.E., Santiago G. Structural and hydrophylicity requirements in quinone-induced lipid peroxidation of phosphatidylcholine vesicles. Toxicological and Environmental Chemistry 1998; 65: 185–202
  • Ilan Y.A., Czapski G., Meisel D. The one-electron transfer redox potentials of free radicals. I. The oxygen/superoxide system. Biochimica et Biophysica Acta 1976; 430: 209–224

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.