178
Views
20
CrossRef citations to date
0
Altmetric
Original

Novel bioassay system for evaluating anti-oxidative activities of food items: Use of basolateral media from differentiated Caco-2 cells

, &
Pages 1367-1375 | Received 07 Oct 2004, Published online: 07 Jul 2009

References

  • Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994; 344: 793–795
  • Markert M, Andrews PC, Babior BM. Measurement of of NADPH oxidase-containing particles from human neutrophils. Methods Enzymol 1984; 105: 358–365
  • Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994; 78: 915–918
  • Ischiropoulous H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 1992; 298: 446–451
  • Murakami A, Ohura S, Nakamura Y, Koshimizu K, Ohigashi H. 1′-Acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin. Oncology 1996; 53: 386–391
  • Nakamura Y, Murakami A, Koshimizu K, Ohigashi H. Identification of pheophorbide α and its related compounds as possible anti-tumor promoters in the leaves of Neptunia oleracea. Biosci Biotechnol Biochem 1996; 60: 1028–1030
  • Kim OK, Murakami A, Nakamura Y, Ohigashi H. Screening of edible Japanese plants for nitric oxide generation inhibitory generation inhibitory activities in RAW 264.7 cells. Cancer Lett 1998; 125: 199–207
  • Murakami A, Kuki W, Takahashi Y, Yonei H, Nakamura Y, Ohto Y, Ohigashi H, Koshimizu K. Auraptene, a citrus coumarin, inhibits 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in ICR mouse skin, possibly through suppression of superoxide generation in leukocytes, Jpn. J Cancer Res 1997; 88: 443–452
  • Murakami A, Nakamura Y, Torikai K, Tanaka T, Koshiba T, Koshimizu K, Kuwahara S, Takahashi Y, Ogawa K, Yano M, Tokuda H, Nishino H, Mimaki Y, Sashida Y, Kitanaka S, Ohigashi H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res 2000; 60: 5059–5066
  • Ohnishi M, Tanaka T, Makita H, Kawamori T, Mori H, Satoh K, Hara A, Murakami A, Ohigashi H, Koshimizu K. Chemopreventive effect of a xanthine oxidase inhibitor 1′-acetoxychavicol acetate, on rat oral carcinogenesis. Jpn J Cancer Res 1996; 87: 349–356
  • Tanaka T, Makita H, Kawamori T, Kawabata K, Mori H, Murakami A, Satoh K, Hara A, Ohigashi H, Koshimizu K. A xanthine oxidase inhibitor 1′-acetoxychavicol acetate inhibits azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis 1997; 18: 1113–1118
  • Nakamura Y, Murakami A, Koshimizu K, Ohigashi H. Inhibitory effect of pheophorbide α, a chlorophyll-related compound on skin tumor promotion in ICR mouse. Cancer Lett 1996; 108: 247–255
  • Lennernas H, Ahrenstedt O, Hallgren R, Knutson L, Ryde M, Paalzow LK. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Parm Res 1992; 9: 1243–1251
  • Lennernas H. Human intestinal permeability. J Pharm Sci 1998; 87: 403–410
  • Pinto M, Robine-leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix E, Simon-Assmann P, Haffen K, Fogh J, Zwibaum A. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 1983; 47: 323–330
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989; 96: 736–749
  • Wang H, Dutta B, Huang W, Devoe LD, Leibach FH, Ganapathy V, Prasad PD. Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): Primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim Biophys Acta 1999; 1461: 1–9
  • Walgren RA, Lin JT, Kinne RK, Walle T. Cellular uptake of dietary flavonoid quercetin 4′-beta-glucoside by sodium-dependent glucose transporter SGLT1. J Pharmacol Exp Ther 2000; 294: 837–843
  • Hashimoto K, Kawagishi H, Nakayama T, Shimizu M. Effect of capsianoside, a diterpene glycoside, on tight-junctional permeability. Biochim Biophys Acta 1997; 1323: 281–290
  • Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal (Caco-2) cells. Biochem Biophys Res Commun 1991; 175: 880–885
  • Pade V, Stavchansky S. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J Pharm Sci 1998; 87: 1604–1607
  • During A, Hussain MM, Morei DW, Harrison EH. Carotenoid uptake and secretion by CaCo-2 cells: beta-carotene isomer selectivity and carotenoid interactions. J Lipid Res 2002; 43: 1086–1095
  • Ferruzzi MG, Failla ML, Schwartz SJ. Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and Caco-2 human cell model. J Agric Food Chem 2001; 49: 2082–2089
  • Sugawara T, Baskaran V, Tsuzuki W, Nagao A. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J Nutr 2002; 132: 946–951
  • Murota K, Shimizu S, Chujo H, Moon JH, Terao J. Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell line Caco-2. Arch Biochem Biophys 2000; 384: 391–397
  • Liu Y, Hu M. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perused rat intestinal model. Drug Metab Dispos 2002; 30: 370–377
  • Murota K, Shimizu S, Miyamoto S, Izumi T, Obata A, Kikuchi M, Terao J. Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: Comparison of isoflavonoids and flavonoids. J Nutr 2002; 132: 1956–1961
  • Vaidyanathan J, Walle T. Transport and metabolism of the tea fravonoid ( − )-epicatechin by the human intestinal cell line Caco-2. Pharm Res 2001; 18: 1420–1425
  • Kaldas MI, Walle UK, Walle T. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J Pharm Pharmacol 2003; 55: 307–312
  • Murakami A, Wada K, Ueda N, Sasaki K, Haga M, Kuki W, Takahashi Y, Yonei H, Koshimizu K, Ohigashi H. In vitro absorption and metabolism of a citrus chemopreventive agent, auraptene, and its modifying effects on xenobiotic enzyme activities in mouse livers. Nutr Cancer 2000; 36: 191–199
  • Murakami A, Kuwahara S, Takahashi Y, Ito C, Furukawa H, Ju-Ichi M, Koshimizu K. In vitro absorption and metabolism of nobiletin, a chemopreventive polymethoxyflavonoid in citrus fruits. Biosci Biotechnol Biochem 2001; 65: 194–197
  • Sladowski D, Steer SJ, Clothier RH, Balls M. An improved MTT assay. J Immunol Methods 1993; 157: 203–207
  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982; 126: 131–138
  • Kim HW, Murakami A, Nakamura Y, Ohigashi H. Screening of edible Japanese plants for suppressive effects on phorbol ester-induced superoxide generation in differentiated HL-60 cells and AS52 cells. Cancer Lett 2002; 176: 7–16
  • Murakami A, Takahashi D, Koshimizu K, Ohigashi H. Synergistic suppression of superoxide and nitric oxide generation from inflammatory cells by combined food factors. Mutat Res 2003; 523–524: 151–161
  • Garrett DA, Failla ML, Sarama RJ. Development of an in vitro digestion method to assess carotenoid bioavailability from meals. J Agric Food Chem 1999; 47: 4301–4309
  • Abid A, Bouchon I, Siest G, Sabolovic N. Glucuronidation in the Caco-2 human intestinal cell line: Induction of UDP-glucuronosyltransferase 1*6. Biochem Pharmacol 1995; 50: 557–561
  • Paine MF, Fisher MB. Immunochemical identification of UGT isoforms in human small bowel and in Caco-2 cell monolayers. Biochem Biophys Res Commun 2000; 273: 1053–1057
  • Tamura H, Matsui M. Inhibitory effects of green tea and grape juice on the phenol sulfotransferase activity of mouse intestines and human colon carcinoma cell line, Caco-2. Biol Pharm Bull 2000; 23: 695–699
  • Baranczyk-Kuzma A, Garren JA, Hidalgo IJ, Borchardt RT. Substrate specificity and some properties of phenol sulfotransferase from human intestinal Caco-2 cells. Life Sci 1991; 49: 1197–1206
  • Prueksaritanont T, Gorham LM, Hochman JH, Tran LO, Vyas KP. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab Dispos 1996; 24: 634–642
  • Ioku K, Pongpiriyadacha Y, Konishi Y, Takei Y, Nakatani N, Terao J. beta-Glucosidase activity in the rat small intestine toward quercetin monoglucosides. Biosci Biotechnol Biochem 1998; 62: 1428–1431
  • Claud EC, Savidge T, Walker WA. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 2003; 53: 419–425
  • Tanaka S, Saitoh O, Tabata K, Matsuse R, Kojima K, Sugi K, Nakagawa K, Kayazawa M, Teranishi T, Uchida K, Hirata I, Katsu K. Medium-chain fatty acids stimulate interleukin-8 production in Caco-2 cells with different mechanisms from long-chain fatty acids. J Gastroenterol Hepatol 2001; 16: 748–754
  • Fusunyan RD, Quinn JJ, Ohno Y, MacDermott RP, Sanderson IR. Butyrate enhances interleukin (IL)-8 secretion by intestinal epithelial cells in response to IL-1beta and lipopolysaccharide. Pediatr Res 1998; 43: 84–90
  • Hosoi T, Hirose R, Saegusa S, Ametani A, Kiuchi K, Kaminogawa S. Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Int J Food Microbiol 2003; 82: 255–264
  • Kuo SM, Leavitt PS, Lin CP. Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol Trace Elem Res 1998; 62: 135–153
  • Okada T, Narai A, Matsunaga S, Fusetani N, Shimizu M. Assessment of the marine toxins by monitoring the integrity of human intestinal Caco-2 cell monolayers. Toxicol In Vitro 2000; 14: 219–226
  • Karyekar CS, Fasano A, Raje S, Lu R, Dowling TC, Eddington ND. Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J Pharm Sci 2003; 92: 414–423
  • Xu J, Go ML, Lim LY. Modulation of digoxin transport across Caco-2 cell monolayers by citrus fruit juices: Lime, lemon, grapefruit, and pummelo. Pharm Res 2003; 20: 169–176
  • Hashimoto K, Matsunaga N, Shimizu M. Effect of vegetable extracts on the transepithelial permeability of the human intestinal Caco-2 cell monolayer. Biosci Biotech Biochem 1994; 58: 1345–1346
  • Kotze AF, Luessen HL, de Boer AG, Verhoef JC, Junginger HE. Chitosan for enhanced intestinal permeability: Prospects for derivatives soluble in neutral and basic environments. Eur J Pharm Sci 1999; 7: 145–151
  • Cho SY, Sim JS, Kang SS, Jeong CS, Linhardt RJ, Kim YS. Enhancement of heparin and heparin disaccharide absorption by the Phytolacca americana saponins. Arch Pharm Res 2003; 26: 1102–1108
  • Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther 1998; 284: 362–369
  • Jensen-Jarolim E, Gajdzik L, Haberl I, Kraft D, Scheiner O, Graf J. Hot spices influence permeability of human intestinal epithelial monolayers. J Nutr 1998; 128: 577–581
  • Usami M, Muraki K, Iwamoto M, Ohata A, Matsushita E, Miki A. Effect of eicosapentaenoic acid (EPA) on tight junction permeability in intestinal monolayer cells. Clin Nutr 2001; 20: 351–359
  • Alvarez G, Ramos M, Ruiz F, Satrustegui J, Bogonez E. Pyruvate protection against β -amyloid-induced neutonal death: Role of mitochondrial redox state. J Neurosci Res 2003; 73: 260–269

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.