169
Views
27
CrossRef citations to date
0
Altmetric
Original

Ferritin oxidation and proteasomal degradation: Protection by antioxidants

, , , &
Pages 673-683 | Received 24 Aug 2005, Accepted 29 Sep 2005, Published online: 07 Jul 2009

References

  • Farrer LA, Cupples LA, Haines JL, Jyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Rich N, van Duijn CM. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. JAMA 1997; 278: 1349–1356, A metaanalysis. APOE and Alzheimer Disease Meta Analysis Consortium
  • Keller JN, Schmitt FA, Scheff SW, Ding Q, Butterfield DA, Markesbery WR. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 2005; 64: 1152–1156
  • Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 1997; 23: 134–147
  • Markesbery WR, Carney JM. Oxidative alterations in Alzheimer's disease. Brain Pathol 1999; 9: 133–146
  • Martin JB. Molecular basis of the neurodegenerative disorders. N Engl J Med 1999; 340: 1970–1980
  • Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann Neurol 1994; 36: 747–751
  • Polidori MC, Mattioli P, Aldred S, Cecchetti R, Stahl W, Griffiths H, Senin U, Sies H, Mecocci P. Plasma antioxidant status, immuniglobulin g oxidation and lipid peroxidation in demented patients: Relevance to Alzheimer disease and vascular dementia. Dement Geriatr Cogn Disord 2004; 18: 265–270
  • Shringarpure R, Grune T, Sitte N, Davies KJA. 4-Hydroxynonennal-modified amyloid-β-peptide inhibits the proteasome: Possible importance for Alzheimer's disease. Cell Mol Life Sci 2000; 57: 1802–1809
  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 1989; 52: 381–389
  • Dexter DT, Carayon A, Javoy-Agid F, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD. Alteraion in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991; 114: 1953–1975
  • Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in Parkinson's disease. Prog Neurobiol 1996; 48: 1–19
  • Davies S, Ramsden DB. Huntington's disease. Neurobiol Dis 2001; 3: 3–15
  • Rosenblatt A, Margolis RL, Becher MW, Aylward E, Franz ML, Sherr M, Abbott MH, Lian KY, Ross CA. Does CAG repeat number predict the rate of pathological changes in Huntington's disease?. Ann Neurol 1998; 44: 708–709
  • Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 195: 55–66
  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 1991; 88: 3633–3636
  • Chondrogianni N, Fragoulis EG, Gonos ES. Protein degradation during aging: The lysosome-, the calpain- and the proteasome-dependent cellular proteolytic systems. Biogerontology 2002; 3: 121–123
  • Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos ES. Central role of the proteasome in senescence and survival of human fibroblasts: Induction of a senescence-like phenotype upon its ihibition and resistance to stress upon its activation. J Biol Chem 2003; 278: 28026–28037
  • Delaval E, Perichon M, Friguet B. Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem 2004; 271: 4559–4564
  • Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 2004; 36: 2376–2391
  • Petropoulos I, Friguet B. Protein maintance in aging and replicative senescence: A role for the peptide methionine sulfoxide reductase. Biochim Biophys Acta 2005; 1703: 261–266
  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, von Zglinicki T, Davies KJA. Proteasome inhibition by lipofuscin/ceroid during postmitotic ageing of fibroblasts. FASEB J 2000; 14: 1490–1498
  • Sitte N, Merker K, von Zglinicki T, Davies KJA, Grune T. Protein oxidation and degradation during cellular senescence of human BJ-fibroblasts: Part I—effects of proliferative senescence. FASEB J 2000; 14: 2495–2502
  • Sitte N, Merker K, von Zglinicki T, Davies KJA, Grune T. Protein oxidation and degradation during cellular senescence of human BJ-fibroblasts: Part II—aging of non-dividing cells. FASEB J 2000; 14: 2503–2510
  • Smith DC, Carney JM, Starke-Reed PM, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR. Excess brain protein oxidation and enzyme dysfunction in normal aging an Alzheimer's disease. Proc Natl Acad Sci USA 1991; 88: 10540–10543
  • Sullivan PG, Dragicevic NB, Deng JH, Bay Y, Dimayuga E, Ding Q, Chen Q, Bruce-Keller AJ, Keller JN. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondrial turnover. J Biol Chem 2004; 279: 20699–20707
  • Viteri G, Carrard G, Birlouez-Aragon I, Silvia E, Friguet B. Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys 2004; 427: 197–203
  • Ding Q, Lewis JJ, Strum KM, Dimayuga E, Bruce-Keller AJ, Dunn JC, Keller JN. Polyglutamine expansion, protein aggregation, proteasome activity, and neural survival. J Biol Chem 2002; 277: 13935–13942
  • Grune T, Jung T, Merker K, Davies KJA. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and “aggresomes” during oxidative stress, aging, and disease. Int J Biochem Cell Biol 2004; 36: 2519–2530
  • Keller JN, Gee J, Ding Q. The proteasome in brain aging. Ageing Res Rev 2002; 1: 279–293
  • Stadtman ER, Moskovitz J, Levine RL. Oxidation of methionine residues of proteins: Biological consequences. Antioxid Redox Signal 2003; 5: 577–582
  • Grune T, Reinheckel T, Joshi M, Davies KJ. Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 1995; 270: 2344–2351
  • Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 1996; 271: 15504–15509
  • Grune T, Reinheckel T, Davies KJA. Degradation of oxidized proteins in mammalian cells. FASEB J 1997; 11: 526–534
  • Sitte N, Merker K, Grune T. Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett 1998; 440: 399–402
  • Gieche J, Mehlhase J, Licht A, Zacke T, Sitte N, Grune T. Protein oxidation and proteolysis in RAW264.7 macrophages: Effects of PMA activation. Biochim Biophys Acta 2001; 1538: 321–328
  • Stadtman ER. Oxidation of free amino acids and amino residues in proteins by radiolysis and by metal-catalysed reactions. Ann Rev Biochem 1993; 63: 797–821
  • Friguet B, Stadtman ER, Szweda LI. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. J Biol Chem 1994; 269: 21639–21643
  • Friguet B, Szweda LI. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 1997; 405: 21–25
  • Giuilivi C, Davies KJA. Dityrosine and tyrosine oxidation products are endogenous markers for selective proteolysis of oxidatively modified red blood cell hemoglobine by the proteasome. J Biol Chem 1993; 268: 8752–8759
  • Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron 2003; 40: 427–446
  • Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J Neurochem 2003; 85: 115–122
  • Petropoulos I, Conconi M, Wang X, Hoenel B, Bregegere F, Milner Y, Friguet B. Increase of oxidatively modified protein is associated with a decrease of proteasomal activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 2000; 55: 220–227
  • Nizard C, Poggioli S, Heusele C, Bulteau AL, Moreau M, Saunois A, Schnebert S, Mahe C, Friguet B. Algae extract protection effect on oxidized protein level in human stratum corneum. Ann N Y Acad Sci 2004; 1019: 219–222
  • Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 1997; 23: 361–366
  • Horáková L, Jakstadt M, Sandig G, Duracková Z, Grune T. Prevention of protein oxidation by antioxidants: Inhibition of ferrtin oxidation. Free Radic Res 2002; 36(Suppl. 1)40–42
  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJA. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 1998; 335: 637–642
  • Rudeck M, Volk T, Sitte N, Grune T. Ferritin oxidation in vitro: Implication of iron release and degradation by the 20S proteasome. IUBMB Life 2000; 49: 451–456
  • Mehlhase J, Sandig G, Pantopulos K, Grune T. Oxidation-induced ferritin turnover in microglial cells: Role of proteasome. Free Radic Biol Med 2005; 38: 276–285
  • Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P. A quantitative analysis of isoferrins in selected regions of aged, Parkinsonian and Alzheimer's diseased brains. J Neurochem 1995; 65: 717–724
  • Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MBH. Brain iron and ferritin in Parkinson's and Alzheimer's disease. J Neural Transm 1990; 2: 327–340
  • Carty JL, Bevan R, Waller H, Mistry N, Cooke M, Lunec J, Griffiths HR. The effects of vitamin C supplementation on protein oxidation in healthy volunteers. Biochem Biophys Res Commun 2000; 273: 729–735
  • Grant MM, Barber VS, Griffiths HR. The presence of ascorbate induces expression of brain derived neurotrophic factor in SH–SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics 2005; 5: 534–540
  • Štolc S, Bauer V, Beneš L, Tichý M. Medicinal preparation with antiarhythmic and supporting effect applied with hypoxia, and method of preparing active substance thereof 1984., Czech Patent CS229067.
  • Horáková L, Sies H, Steenken S. Antioxidant action of Stobadine. Methods in enzymology, L Packer. Academic Press, Orlando 1994; 234: 584–592
  • Horáková L, Štolc S. Antioxidant and pharmacodynamic effects of pyridolindole Stobadine. Gen Pharmacol 1998; 30: 627–638
  • Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus Martima) bark Pycnogenol. Free Radic Biol Med 1999; 27: 704–724
  • Rohdewald P. A review of the french maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharm Ther 2002; 40: 158–168
  • Drieu K. Preparation and definition of extract Ginkgo biloba. Presse Med 1986; 15: 1455–1457
  • Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Gardes-Albert A. Antioxidant action of Ginkgo biloba extract EGb 761. Methods Enzymol 1994; 234: 465–475
  • Sastre J, Millán A, Asunción JG, Plá R, Juan G, Pallardó FV, O'Connor E, Martin JA, Droy-Lefaix MT, Vina J. A Ginkgo biloba extract (EGb 761) prevent mitochondrial aging by protecting against oxidative stress. Free Radic Biol Med 1998; 24: 298–304
  • Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 1987; 262: 8303–8313
  • Jentoft N, Dearborn DG. Protein labeling by reductive methylation with sodium cyanoborohydride: Effect of cyanide and metal ions on the reaction. Anal Biochem 1980; 106: 186–190
  • Daneshvar B, Frandsen H, Autrup H, Dragsted LO. Gamma-glutamyl semialdehyde and 2-amino-adipic semialdehyde: Biomarkers of oxidative damage to proteins. Biomarkers 1997; 2: 117–123
  • Amici A, Levine RL, Tsia L, Stadtman ER. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J Biol Chem 1989; 264: 3341–3346
  • Saran M, Michel C, Bors W. Radical function in vivo: A critical review of current concepts and hypotheses. Z Naturforsch [C] 1998; 53: 210–227
  • Saran M, Michel C, Stettmaier K, Bors W. Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions. Free Radic Res 2000; 33: 567–579
  • Thomas CE, Morehouse LA, Aust SD. Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem 1985; 260: 3275–3280
  • Bouton C, Raveau M, Drapier J-C. Modulation of iron regulatory protein function. J Biol Chem 1996; 271: 2300–2306
  • Harrison PM, Arosio P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1996; 1275: 161–203
  • Hentze MW, Kühn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 1996; 93: 8175–8182
  • Horáková L, Lukovic L, Štolc S. Effect of stobadine and vitamin E on the ischemic reperfused brain tissue. Pharmazie 1990; 45: 223–224
  • Štefek M, Benes L, Zelnik VN-oxygen. nation of stobadine, a gamma-carboline antiarrhythmic and cardioprotective agent: The role of flavin-containing monooxygenase. Xenobiotica 1989; 19: 143–150
  • Liu F, Lau BH, Peng Q, Shah V. Pycnogenol protects vascular endothelial cells from beta-amyloid-induced injury. Biol Pharm Bull 2000; 23: 735–737
  • Z'Brun A. Ginkgo—myth and reality. Schweiz Rundsch Med Prax 1995; 84: 1–6
  • DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: Basic studies and clinical applications. Curr Drug Targets 2000; 1: 25–58
  • Christen Y, Maixent JM. What is Ginkgo biloba extract EGb 761? An overview—from molecula biology to clinical medicine. Cell Mol Biol 2002; 48: 601–611
  • Pacifici RE, Kono Y, Davies KJA. Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by the multicatalytic proteinase complex, proteasome. J Bio Chem 1993; 268: 15405–15411
  • Giulivi C, Pacifici RE, Davies KJA. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch Biochem Biophys 1994; 311: 329–341
  • Lasch P, Petras T, Ullrich O, Backmann J, Naumann D, Grune T. Hydrogen peroxideinduced structural alterations of RNAse A. J Biol Chem 2001; 276: 9492–9502
  • Naskalski JW, Bartosz G. Oxidative modification of protein structures. Adv Clin Chem 2001; 35: 161–253
  • Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25: 207–218
  • Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 2002; 32: 790–796
  • Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids 2003; 25: 221–226
  • Levine RL, Wehr N, Williams JA, Stadtman ER, Shacter E. Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 2000; 99: 15–24
  • Headlam HA, Davies MJ. Markers of protein oxidation: Different oxidants give rise to variable yields of bound and released carbonyl products. Free Radic Biol Med 2004; 36: 1175–1184
  • Requena JR, Chao CC, Levine RL, Stadtman ER. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci USA 2001; 98: 69–74
  • Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 1993; 268: 6388–6393
  • Grune T, Blasig IE, Sitte N, Roloff E, Haseloff R, Davies KJA. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 1998; 273: 10857–10862
  • Ullrich O, Reinheckel T, Sitte N, Grune T. Degradation of hypochlorite-damaged glucose-6-phosphate dehydrogenase by the 20S proteasome. Free Radic Biol Med 1999; 27: 487–492
  • Meyerstein D. The “site specific” model revisited. J Inorg Biochem 1997; 67: 170
  • Areias FM, Rego CA, Oliveira CR, Seabra RM. Antioxidant effect of flavonoids after ascorbate/Fe2+-induced oxidative stress in cultured retinal cells. Biochem Pharmacol 2001; 2: 111–118
  • Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 2001; 30: 433–446
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996; 20: 933–956
  • Wei Z, Peng Q, Lau BH, Shah V. Ginkgo biloba inhibits hydrogen peroxide-induced activation of nuclear factor kappa B in vascular endotheliar cells. Gen Pharmacol 1999; 33: 369–375
  • Štefek M, Beneš L. Pyridoindole stobadine is a potent scavenger of hydroxyl radicals. FEBS Lett 1991; 294: 264–266
  • Steenken S, Sundquist AR, Jovanovic SV, Crockett R, Sies H. Antioxidant activity of the pyridoindole Stobadine: Pulse radiolytic characterization of one-electroneoxidized Stobadine and quenching of singlet molecular oxygen. Chem Res Toxicol 1991; 5: 355–360
  • Aruoma OI, Evans PJ, Kaur H, Sutcliffe L, Halliwell B. An evaluation of the antioxidant and potential prooxidant properties of food additives and of Trolox C, vitamin E and probucol. Free Radic Res Commun 1990; 10: 143–157
  • Serbinova EA, Packer L. Antioxidant properties of α-tocopherol and α-tocotrienol, L Packer. Academic Press, Orlando 1994; 234: 354–366
  • Stadtman ER, Oliver CN. Metal-catalysed oxidation of proteins. J Biol Chem 1991; 266: 2005–2008
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 1991; 11: 81–128
  • Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med 1999; 27: 1151–1163
  • Levine RL. Oxidative modification of glutamine synthetase. J Biol Chem 1983; 258: 11823–11827

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.