375
Views
58
CrossRef citations to date
0
Altmetric
BookReview

Role of oxidative stress in experimental sepsis and multisystem organ dysfunction

, , , , , & show all
Pages 665-672 | Received 01 Feb 2006, Published online: 07 Jul 2009

References

  • Gutteridge JMC, Mitchell J. Redox imbalance in the critically ill. Br Med Bull 1999; 55: 49–75
  • Crimi E, Sica V, Williams-Ignarro S, Zhang H, Slutsky AS, Ignarro LJ, Napoli C. The role of oxidative stress in adult critical care. Free Radic Biol Med 2006; 40: 398–406
  • Horton JW. Free radicals and lipid peroxidation mediated injury in burn trauma: The role of antioxidant therapy. Toxicology 2003; 189: 75–88
  • Adkison D, Hollwarth ME, Benoit JN, Parks DA, McCord JM, Granger DN. Role of free radicals in ischemia–reperfusion injury to the liver. Acta Physiol Scand 1986; 548: 101–107
  • Hinder RA, Stein HJ. Oxygen derived free radicals. Arch Surg 1991; 126: 104–105, Editorial
  • McCord JM. Oxygen derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159–163
  • Stein HJ, Esplugues J, Whittle BJ, Bauerfeind P, Hinder RA, Blum AL. Direct cytotoxic effect of oxygen radicals on the gastrica mucosa. Surgery 1989; 106: 318
  • Idris AH, Roberts LJ, 2nd, Caruso L, Showstark M, Layon AJ, Becker LB, Vanden Hoek T, Gabrielli A. Oxidant injury occurs rapidly after cardiac arrest, cardiopulmonary resuscitation, and reperfusion. Crit Care Med 2005; 33: 2043–2048
  • Schiller HJ, Reilly PM, Bulkley GB. Antioxidant therapy. Crit Care Med 1993; 21: S92–S102
  • Stein HJ, Oosthuizen MM, Hinder RA, Lamprechts H. Oxygen free radicals and glutathione in hepatic ischemia/reperfusion injury. J Surg Res 1991; 50: 398–402
  • Yokota J, Chiao JJC, Shires GT. Oxygen free radicals affect cardiac and skeletal cell membrane potential during hemorrhagic shock in rats. Am J Physiol 1992; 262: H84–H90
  • Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303–1310
  • Salvo I, de Cian W, Musicco M, Langer M, Piadena R, Wolfler A, Montani C, Magni E. The Italian SEPSIS study: Preliminary results on the incidence and evolution of SIRS, sepsis, severe sepsis and septic shock. Intensive Care Med 1995; 21: S244–S249
  • Awad SS. State-of-the-art therapy for severe sepsis and multisystem organ dysfunction. Am J Surg 2003; 186: 23S–30S
  • Abello PA, Fidler SA, Bulkley GB, Buchman TG. Antioxidants modulate induction of programmed endothelial cell death (apoptosis) by endotoxin. Arch Surg 1994; 129: 134–140
  • Ritter C, Andrades M, Frota ML, Jr., Bonatto F, Pinho RA, Polydoro M, Klamt F, Pinheiro CT, Menna-Barreto SS, Moreira JC, Dal-Pizzol F. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med 2003; 29: 1782–1789
  • Andrades M, Ritter C, Moreira JC, Dal-Pizzol F. Oxidative parameters differences during non-lethal and lethal sepsis development. J Surg Res 2005; 125: 68–72
  • Carraway MS, Piantadosi CA, Jenkinson CP, Huang YC. Differential expression of arginase and iNOS in the lung in sepsis. Exp Lung Res 1998; 24: 253–268
  • Razavi HM, Wang L, Weicker S, Quinlan GJ, Mumby S, McCormack DG, Mehta S. Pulmonary oxidant stress in murine sepsis is due to inflammatory cell nitric oxide. Crit Care Med 2005; 33: 1333–1339
  • Massion PB, Moniotte S, Balligand JL. Nitric oxide: Does it play a role in the heart of the critically ill?. Curr Opin Crit Care 2001; 7: 323–336
  • Murray PT, Wylam ME, Umans JG. Nitric oxide and septic vascular dysfunction. Anesth Analg 2000; 90: 89–101
  • Vincent JL, Zhang H, Szabo C, Preiser JC. Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 2000; 161: 1781–1785
  • Hollenberg SM, Easington CR, Osman J, Broussard M, Parrillo JE. Effects of nitric oxide synthase inhibition on microvascular reactivity in septic mice. Shock 1999; 12: 262–267
  • Kinugawa K, Takahashi T, Kohmoto O, Yao A, Aoyagi T, Momomura S, Hirata Y, Serizawa T. Nitric oxide-mediated effects of interleuking-6 on [Ca 2+] and cell contraction in cultured chick ventricular myocytes. Circ Res 1994; 75: 285–295
  • Kumar A, Brar R, Wang P, Dee L, Skorupa G, Khadour F, Schulz R, Parrillo JE. Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 1999; 276: R265–R276
  • Stein B, Frank P, Schmitz W, Scholz H, Thoenes M. Endotoxin and cytokines induce direct cardiodepressive effects in mammalian cardiomyocytes via induction of nitric oxide synthase. J Mol Cell Cardiol 1996; 28: 1631–1639
  • Ullrich R, Scherrer-Crosbie M, Bloch KD, Ichinose F, Nakajima H, Picard MH, Zapol WM, Quezado ZM. Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 2000; 102: 1440–1446
  • Strunk V, Hahnenkamp K, Schneuing M, Fischer LG, Rich GF. Selective iNOS inhibition prevents hypothension in septic rats while preserving endothelium-dependent vasodilation. Anesth Analg 2001; 92: 681–682
  • McKinnon RL, Lidington D, Bolon M, Ouellette Y, Kidder GM, Tyml K. Reduced arteriolar conducted vasoconstriction in septic mouse cremaster muscle is mediated by nNOS-derived NO. Cardiovasc Res 2006; 69: 236–244
  • Szabo C, Cuzzocrea S, Zingarelli B, O'Connor M, Salzman AL. Endothelial dysfunction in a rat model of endotoxic shock: Importance of the activation of the poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 1997; 100: 723–735
  • Takakura K, Taniguchi T, Muramatsu I, Takeuchi K, Fukuda S. Modification of alpha1-adrenoceptors by peroxynitrite as a possible mechanism of systemic hypotension in sepsis. Crit Care Med 2002; 30: 894–899
  • Giusti-Paiva A, De Castro M, Antunes-Rodrigues J, Carnio EC. Inducible nitric oxide synthase pathway in the central nervous system and vasopressin release during experimental septic shock. Crit Care Med 2002; 30: 1306–1310
  • Boczkowski J, Lanone S, Ungureanu-Longrois D, Danialou G, Fournier T, Aubier M. Induction of diaphragmatic nitric oxide synthase after endotoxin administration in rats. J Clin Invest 1996; 98: 1550–1559
  • el-Dwairi Q, Comtois A, Guo Y, Hussain SN. Endotoxin-induced skeletal muscle contractile dysfunction: contribution of nitric oxide synthases. Am J Physiol 1998; 247: C770–C779
  • Gath I, Closs EI, Godtel-Armbrust U, Schmitt S, Nakane M, Wessler I, Forstermann U. NO Inducible synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: Implications for contractile function. FASEB J 1996; 10: 1614–1620
  • Boczkowski J, Lisdero CL, Lanone S, Samb A, Carreras MC, Boveris A, Aubier M, Poderoso JJ. Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB J 1999; 13: 1637–1646
  • Chavez AM, Menconi MJ, Hodin RA, Fink MP. Cytokine-induced intestinal epithelial hyperpermeability: Role of nitric oxide. Crit Care Med 1999; 27: 2246–2251
  • Suzuki Y, Deitch EA, Mishima S, Lu Q, Xu D. Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia–reperfusion injury. Crit Care Med 2000; 28: 3692–3696
  • Carbonell LF, Nadal JA, Llanos MC, Hernandez I, Nava E, Diaz J. Depletion of liver glutathione potentiates the oxidative stress and decreases nitric oxide synthesis in a rat endotoxin shock model. Crit Care Med 2000; 28: 2002–2006
  • Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342: 1334–1349
  • Chow CW, Herrera Abreu MT, Suzuki T, Downey GP. Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol. 2003; 29: 427–431
  • Fink MP. Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome. Curr Opin Crit Care 2002; 8: 6–11
  • Sanders KA, Huecksteadt T, Xu P, Sturrock AB, Hoidal JR. Regulation of oxidant production in acute lung injury. Chest 1999; 116: 56S–61S
  • Hammerschmidt S, Buchler N, Wahn H. Tissue lipid peroxidation and reduced glutathione depletion in hypochlorite-induced lung injury. Chest 2002; 121: 573–581
  • Matsuo N. The role of intrapulmonary nitric oxide generation in the development of adult respiratory distress syndrome. Surg Today 1999; 29: 1068–1074
  • Yang C, Moriuchi H, Takase J, Ishitsuka Y, Irikura M, Irie T. Oxidative stress in early stage of acute lung injury induced with oleic acid in guinea pigs. Biol Pharm Bull 2003; 26: 424–428
  • Hammerschmidt S, Sandvoss T, Gessner C, Schauer J, Wirtz H. High in comparison with low tidal volume ventilation aggravates oxidative stress-induced lung injury. Biochim Biophys Acta 2003; 1637: 75–82
  • Hammerschmidt S, Schiller J, Kuhn H, Meybaum M, Gessner C, Sandvoss T, Arnold K, Wirtz H. Influence of tidal volume on pulmonary NO release, tissue lipid peroxidation and surfactant phospholipids. Biochim Biophys Acta 2003; 1639: 17–26
  • Mikawa K, Nishina K, Tamada M, Takao Y, Maekawa N, Obara H. Aminoguanidine attenuates endotoxin-induced acute lung injury in rabbits. Crit Care Med 1998; 26: 905–911
  • Wang W, Suzuki Y, Tanigaki T, Rank DR, Raffin TA. Effect of the NADPH oxidase inhibitor apocynin on septic lung injury in guinea pigs. Am J Respir Crit Care Med 1994; 150: 1449–1452
  • Kristof AS, Goldberg P, Laubach V, Hussain SN. Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury. Am J Respir Crit Care Med 1998; 158: 1883–1889
  • Shanley TP, Zhao B, Macariola DR, Denenberg A, Salzman AL, Ward PA. Role of nitric oxide in acute lung inflammation: Lessons learned from the inducible nitric oxide synthase knockout mouse. Crit Care Med 2002; 30: 1960–1968
  • Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 289: L834–L841
  • Bulger EM, Maier RV. Antioxidant in critical illness. Arch Surg 2001; 136: 1201–1207
  • Furhman MP. Antioxidant supplementation in critical illness: What do we know?. Nutrition 2000; 16: 470–471
  • Rotstein OD. Antioxidant therapy in critical illness. Crit Care Med 2004; 32: 610–611
  • Oldham KM, Bowen EP. Oxidative stress in critical care: Is antioxidant supplementation beneficial?. J Am Diet Assoc 1998; 98: 1001–1008
  • Warner BW, Hasselgren PO, James JH, Bialkowska H, Rigel DF, Ogle C, Fischer JE. Superoxide dismutase in rats with sepsis. Effect on survival rate and amino acid transport. Arch Surg 1987; 122: 1142–1146
  • Amari T, Kubo K, Kobayashi T, Sekiguchi M. Effects of recombinant human superoxide dismutase on tumor necrosis factor-induced lung injury in awake sheep. J Appl Physio 1993; 74: 2641–2648
  • Koyama S, Kobayashi T, Kubo K, Sekiguchi M, Ueda G. Recombinant-human superoxide dismutase attenuates endotoxin-induced lung injury in awake sheep. Am Rev Respir Dis 1992; 145: 1404–1409
  • Gonzalez PK, Zhuang J, Doctrow SR, Malfroy B, Benson PF, Menconi MJ, Fink MP. Delayed treatment with EUK-8, a novel synthetic superoxide dismutase (SOD) and catalase (CAT) mimetic, ameliorates acute lung injury in endotoxemic pigs. Surg Forum 1995; 46: 72–73
  • Gonzalez PK, Zhuang J, Doctrow SR, Malfroy B, Benson PF, Menconi MJ, Fink MP. EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine. J Pharmacol Exp Ther 1995; 275: 798–806
  • Cuzzocrea S, Mazzon E, Di Paola R, Genovese T, Serraino I, Dugo L, Cuzzocrea E, Fulia F, Caputi AP, Salvemini D. Protective effects of M40401, a selective superoxide dismutase mimetic, on zymosan-induced nonseptic shock. Crit Care Med 2004; 32: 157–167
  • Salvemini D, Cuzzocrea S. Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine. Crit Care Med 2003; 31: S29–S38
  • Milligan SA, Hoeffel JM, Goldstein IM, Flick MR. Effect of catalase on endotoxin-induced acute lung injury in unanesthetized sheep. Am Rev Respir Dis 1988; 137: 420–428
  • Cuzzocrea S, McDonald MC, Mazzon E, Filipe HM, Centorrino T, Lepore V, Terranova ML, Ciccolo A, Caputi AP, Thiemermann C. Beneficial effects of tempol, a membrane-permeable radical scavenger, on the multiple organ failure induced by zymosan in the rat. Crit Care Med 2001; 29: 102–111
  • Thiemermann C. Membrane-permeable radical scavengers (tempol) for shock, ischemia–reperfusion injury, and inflammation. Crit Care Med 2003; 31: S76–S84
  • Zacharowski K, Olbrich A, Cuzzocrea S, Foster SJ, Thiemermann C. Membrane-permeable radical scavenger, tempol, reduces multiple organ injury in a rodent model of gram-positive shock. Crit Care Med 2000; 28: 1953–1961
  • Matejovic M, Krouzecky A, Martinkova V, Rokyta R, Jr, Radej J, Kralova H, Treska V, Radermacher P, Novak I. Effects of tempol, a free radical scavenger, on long-term hyperdynamic porcine bacteremia. Crit Care Med 2005; 33: 1057–1063
  • Liaw WJ, Chen TH, Lai ZZ, Chen SJ, Chen A, Tzao C, Wu JY, Wu CC. Effects of a membrane-permeable radical scavenger, tempol, on intraperitoneal sepsis-induced organ injury in rats. Shock 2005; 23: 88–96
  • Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J Immunol 1996; 157: 1630–1637
  • Zhang H, Spapen H, Nguyen DN, Benlabed M, Buurman WA, Vincent JL. Protective effects of N-acetyl-l-cysteine in endotoxemia. Am J Physiol 1994; 266: H1746–H1754
  • Zhang H, Spapen H, Nguyen DN, Rogiers P, Bakker J, Vincent JL. Effects of N-acetyl-l-cysteine on regional blood flow during endotoxic shock. Eur Surg Res 1995; 27: 292–300
  • Vassilev D, Hauser B, Bracht H, Ivanyi Z, Schoaff M, Asfar P, Vogt J, Wachter U, Schelzig H, Georgieff M, Bruckner UB, Radermacher P, Froba G. Systemic, pulmonary, and hepatosplanchnic effects of N-acetylcysteine during long-term porcine endotoxemia. Crit Care Med 2004; 32: 525–532
  • Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Ciccolo A, Centorrino T, De Sarro A, Caputi AP. Protective effects of n-acetylcysteine on lung injury and red blood cell modification induced by carrageenan in the rat. FASEB J 2001; 15: 1187–1200
  • Bernard GR, Lucht WD, Niedermeyer ME, Snapper JR, Ogletree ML, Brigham KL. Effect of N-acetylcysteine on the pulmonary response to endotoxin in the awake sheep and upon in vitro granulocyte function. J Clin Invest 1984; 73: 1772–1784
  • Davreux CJ, Soric I, Nathens AB, Watson RW, McGilvray ID, Suntres ZE, Shek PN, Rotstein OD. N-acetyl cysteine attenuates acute lung injury in the rat. Shock 1997; 8: 432–438
  • Ozdulger A, Cinel I, Koksel O, Cinel L, Avlan D, Unlu A, Okcu H, Dikmengil M, Oral U. The protective effect of N-acetylcysteine on apoptotic lung injury in cecal ligation and puncture-induced sepsis model. Shock 2003; 19: 366–372
  • Cuzzocrea S, Costantino G, Mazzon E, Caputi AP. Protective effect of N-acetylcysteine on multiple organ failure induced by zymosan in the rat. Crit Care Med 1999; 27: 1524–1532
  • Cuzzocrea S, Mazzon E, Costantino G, Serraino I, De Sarro A, Caputi AP. Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovasc Res 2000; 47: 537–548
  • Fan J, Shek PN, Suntres ZE, Li YH, Oreopoulos GD, Rotstein OD. Liposomal antioxidants provide prolonged protection against acute respiratory distress syndrome. Surgery 2000; 128: 332–338
  • Fox ES, Brower JS, Bellezzo JM, Leingang KA. N-acetylcysteine and alpha-tocopherol reverse the inflammatory response in activated rat Kupffer cells. J Immunol 1997; 158: 5418–5423
  • Kheir-Eldin AA, Motawi TK, Gad MZ, Abd-ElGawad HM. Protective effect of vitamin E, beta-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem Cell Biol 2001; 33: 475–482
  • Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JC, Dal-Pizzol F. Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 2004; 32: 342–349
  • Ritter C, da Cunha AA, Echer IC, Andrades M, Reinke A, Lucchiari N, Rocha J, Streck EL, Menna-Barreto S, Moreira JC, Dal-Pizzol F. Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Crit Care Med 2006; 34: 471–477
  • Nayci A, Atis S, Comelekoglu U, Ozge A, Ogenler O, Coskun B, Zorludemir S. Sepsis induces early phrenic nerve neuropathy in rats. Eur Respir J 2005; 26: 686–692
  • Atis S, Nayci A, Ozge A, Comelekoglu U, Gunes S, Bagdatoglu O. N-. acetylcysteine protects the rats against phrenic nerve dysfunction in sepsis. Shock 2006; 25: 30–35
  • Goode HF, Webster NR. Free radicals and antioxidants in sepsis. Crit Care Med 1993; 21: 1770–1776
  • Minko T, Stefanov A, Pozharov V. Selected contribution: Lung hypoxia: Antioxidant and antiapoptotic effects of liposomal alpha-tocopherol. J Appl Physiol 2002; 93: 1550–1560
  • Rocksen D, Ekstrand-Hammarstrom B, Johansson L, Bucht A. Vitamin E reduces transendothelial migration of neutrophils and prevents lung injury in endotoxin-induced airway inflammation. Am J Respir Cell Mol Biol 2003; 28: 199–207
  • Inci S, Ozcan OE, Kilinc K. Time-level relationship for lipid peroxidation and the protective effect of alpha-tocopherol in experimental mild and severe brain injury. Neurosurgery 1998; 43: 330–335
  • Arkovitz MS, Wispe JR, Garcia VF, Szabo C. Selective inhibition of the inducible isoform of nitric oxide synthase prevents pulmonary transvascular flux during acute endotoxemia. J Pediatr Surg 1996; 31: 1009–1015
  • Saetre T, Hoiby EA, Aspelin T, Lermark G, Egeland T, Lyberg T. Aminoethyl-isothiourea, a nitric oxide synthase inhibitor and oxygen radical scavenger, improves survival and counteracts hemodynamic deterioration in a porcine model of streptococcal shock. Crit Care Med 2000; 28: 2697–2706
  • Szabo A, Hake P, Salzman AL, Szabo C. Beneficial effects of mercaptoethylguanidine, an inhibitor of the inducible isoform of nitric oxide synthase and a scavenger of peroxynitrite, in a porcine model of delayed hemorrhagic shock. Crit Care Med 1999; 27: 1343–1350
  • Wu F, Wilson JX, Tyml K. Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med 2004; 37: 1282–1289
  • Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 2004; 32: 21–30
  • Hauser B, Bracht H, Matejovic M, Radermacher P, Venkatesh B. Nitric oxide synthase inhibition in sepsis? Lessons learned from large-animal studies. Anesth Analg 2005; 101: 488–498

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.