185
Views
14
CrossRef citations to date
0
Altmetric
Original

UV-irradiation induces oxidative damage to mitochondrial DNA primarily through hydrogen peroxide: Analysis of 8-oxodGuo by HPLC

, , , , &
Pages 1138-1148 | Received 07 Jan 2006, Published online: 07 Jul 2009

References

  • Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: An enemy within. Trends Genet 1993; 9: 246–249
  • Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972; 128: 617–630
  • Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta 1996; 1276: 87–105
  • Stadtman ER. Protein oxidation and aging. Science 1992; 257: 1220–1224
  • Hirose K, Longo DL, Oppenheim JJ, Matsushima K. Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J 1993; 7: 361–368
  • Wispe JR, Warner BB, Clark JC, Dey CR, Neuman J, Glasser SW, Crapo JD, Chang LY, Whitsett JA. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem 1992; 267: 23937–23941
  • Clayton DA. Transcription of the mammalian mitochondrial genome. Annu Rev Biochem 1984; 53: 573–594
  • Larsson NG, Clayton DA. Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet 1995; 29: 151–178
  • Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482–1488
  • Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000; 25: 502–508
  • Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988; 85: 6465–6467
  • Beckman KB, Ames BN. Detection and quantification of oxidative adducts of mitochondrial DNA. Methods Enzymol 1996; 264: 442–453
  • Farber JL. Mechanisms of cell injury by activated oxygen species. Environ Health Perspect 1994; 102: 17–24
  • Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR. UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol 1999; 112: 751–756
  • Berneburg M, Grether-Beck S, Kurten V, Ruzicka T, Briviba K, Sies H, Krutmann J. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem 1999; 274: 15345–15349
  • Kawasaki K, Suzuki T, Ueda M, Ichihashi M, Reguer G, Yamasaki H. CC to TT mutation in the mitochondrial DNA of normal skin: Relationship to ultraviolet light exposure. Mutat Res 2000; 468: 35–43
  • Takada Y, Hachiya M, Park SH, Osawa Y, Ozawa T, Akashi M. Role of reactive oxygen species in cells overexpressing manganese superoxide dismutase: Mechanism for induction of radioresistance. Mol Cancer Res 2002; 1: 137–146
  • Attardi G, Ching E. Biogenesis of mitochondrial proteins in HeLa cells. Methods Enzymol 1979; 56: 66–79
  • Ausenda C, Chomyn A. Purification of mitochondrial DNA from human cell cultures and placenta. Methods Enzymol 1996; 264: 122–128
  • Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol 1997; 138: 449–469
  • Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997; 22: 269–285
  • Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 2003; 65: 1575–1582
  • Matsuda N, Horikawa M, Wang LH, Yoshida M, Okaichi K, Okumura Y, Watanabe M. Differential activation of ERK 1/2 and JNK in normal human fibroblast-like cells in response to UVC radiation under different oxygen tensions. Photochem Photobiol 2000; 72: 334–339
  • Tyrrell RM. Activation of mammalian gene expression by the UV component of sunlight—from models to reality. Bioessays 1996; 18: 139–148
  • Pourzand C, Watkin RD, Brown JE, Tyrrell RM. Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin. Proc Natl Acad Sci USA 1999; 96: 6751–6756
  • Schneider JE, Price S, Maidt L, Gutteridge JM, Floyd RA. Methylene blue plus light mediates 8-hydroxy 2′-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res 1990; 18: 631–635
  • Greenberg MM. In vitro and in vivo effects of oxidative damage to deoxyguanosine. Biochem Soc Trans 2004; 32: 46–50
  • Gau RJ, Yang HL, Suen JL, Lu FJ. Induction of oxidative stress by humic acid through increasing intracellular iron: A possible mechanism leading to atherothrombotic vascular disorder in blackfoot disease. Biochem Biophys Res Commun 2001; 283: 743–749
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47–95
  • Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T. Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 1991; 179: 1023–1029
  • Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993; 34: 609–616
  • Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem 1991; 266: 22028–22034
  • Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer 1996; 32A: 30–38
  • Knight JA. Advances in the analysis of cerebrospinal fluid. Ann Clin Lab Sci 1997; 27: 93–104
  • Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000; 29: 222–230
  • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78: 547–581
  • Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 2002; 3: 1129–1134
  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 1999; 286: 774–779
  • Ray AJ, Turner R, Nikaido O, Rees JL, Birch-Machin MA. The spectrum of mitochondrial DNA deletions is a ubiquitous marker of ultraviolet radiation exposure in human skin. J Invest Dermatol 2000; 115: 674–679
  • Pang CY, Lee HC, Yang JH, Wei YH. Human skin mitochondrial DNA deletions associated with light exposure. Arch Biochem Biophys 1994; 312: 534–538
  • Tyrrell R. Redox regulation and oxidant activation of heme oxygenase-1. Free Radic Res 1999; 31: 335–340
  • Reelfs O, Tyrrell RM, Pourzand C. Ultraviolet a radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts. J Invest Dermatol 2004; 122: 1440–1447
  • Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1998; 1366: 53–67
  • Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1989; 1: 642–645
  • Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mutat Res 2002; 509: 127–151
  • Ozawa T. Genetic and functional changes in mitochondria associated with aging. Physiol Rev 1997; 77: 425–464
  • Burdon RH. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 1996; 24: 1028–1032
  • de Haan JB, Cristiano F, Iannello R, Bladier C, Kelner MJ, Kola I. Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum Mol Genet 1996; 5: 283–292
  • Elroy-Stein O, Bernstein Y, Groner Y. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: Extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. Embo J 1986; 5: 615–622
  • Midorikawa K, Kawanishi S. Superoxide dismutases enhance H2O2-induced DNA damage and alter its site specificity. FEBS Lett 2001; 495: 187–190
  • Zhang X, Han D, Ding D, Dai P, Yang W, Jiang S, Salvi RJ. Deletions are easy detectable in cochlear mitochondrial DNA of Cu/Zn superoxide dismutase gene knockout mice. Chin Med J (Engl) 2002; 115: 258–263
  • Fukagawa NK. Aging: Is oxidative stress a marker or is it causal?. Proc Soc Exp Biol Med 1999; 222: 293–298

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.