227
Views
86
CrossRef citations to date
0
Altmetric
Original

Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice

, , , , , , & show all
Pages 15-24 | Received 07 Jun 2006, Published online: 07 Jul 2009

References

  • Harman D. Aging, a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298–300
  • Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78: 547–581
  • Levine RL, Stadtman ER. Oxidative modification of proteins during aging. Exp Gerontol 2001; 36: 1495–1502
  • Shoal RS, Mockett RJ, Orr WC. Mechanisms of aging: An appraisal of the oxidative stress hypothesis. Free Rad Biol Med 2002; 33: 575–586
  • Ku HH, Brunk UT, Sohal TS. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammal species. Free Rad Biol Med 1994; 15: 621–627
  • Barja G. Rate of generation of oxidative-stress related damage on animal longevity. Free Rad Biol Med 2002; 33: 1167–1172
  • Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: Genetic and evolutionary implications. Exp Gerontol 1998; 33: 113–126
  • Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): A novel murine model of accelerated senescence. J Am Geriatr Soc 1991; 39: 911–919
  • Takeda T. Senescence-accelerated mouse (SAM): A biogerontological resource in aging research. Neurobiol Aging 1999; 20: 105–110
  • Hosokawa M. A higher oxidative status accelerates senescence and aggravates age dependent disorders in SAMP strains of mice. Mech Aging Dev 2002; 123: 1553–1561
  • Mori A, Utsumi K, Liu J, Hosokawa M. Oxidative damage in the senescence accelerated mouse. Ann NY Acad Sci USA 1998; 854: 239–250
  • Butterfield DA, Howard BJ, Yatin S, Allen KL, Carney JM. Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci USA 1997; 94: 674–678
  • Liu J, Mori A. Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): A comparison with ddY mice. Mech Aging Dev 1993; 71: 23–30
  • Matsugo S, Kitagawa T, Minami S, Esashi Y, Oomura Y, Tokumaru S, Kojo S, Matsushima K, Sasaki K. Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice. Neurosci Lett 2000; 278: 105–108
  • Nomura Y, Wang BX, Qi SB, Namba T, Kaneko S. Biochemical changes related to aging in the senescence-accelerated mouse. Exp Gerontol 1989; 24: 59–65
  • Yarian CS, Rebrin I, Sohal RS. Aconitase TP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochim Biophys Res Comm 2005; 330: 151–156
  • Jones DP. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol 2002; 348: 93–112
  • Rebrin I, Sohal RS. Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp Gerontol 2004; 39: 1513–1519
  • Park JW, Choi CH, Kim MS, Chung MH. Oxidative status in senescence accelerated mice. J Gerontol A Biol Sci Med Sci 1996; 51: B337–B345
  • Nishikawa T, Takahashi TA, Fujibayashi Y, Fujisawa H, Zhu B, Nishimura Y, Ohnishi K, Higuchi K, Hashimoto N, Hosokawa M. An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Neurosci Lett 1998; 254: 69–72
  • Nakahara H, Kanno T, Inai Y, Utsumi K, Hiramatsu M, Mori A, Packer L. Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Free Rad Biol Med 1998; 24: 85–92
  • Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical properties and potential mechanisms: Melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2: 181–197
  • Antolin IC, Rodríguez RM, Sain JC, Mayo H, Aria M, Kotle MJ, Rodríguez-Colunga J, Toliva D, Menéndez-Peláez A. Neurohormone aMT prevents damage: Effect on gene expression for antioxidative enzymes. FASEB J 1996; 10: 882–890
  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: Reactions and products. Biol Signals Recep 2000; 9: 137–159
  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: A potent endogenous hydroxyl radical scavenger. Endocr J 1993; 1: 57–60
  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintaub ST, Qi W. Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of aMT biotransformation. Free Rad Biol Med 2000; 29: 1177–1185
  • Guenther AL, Schmidt SL, Laatsch H, Fotso S, Ness H, Ressmeyer AR, Poeggeler B, Hardeland R. Reactions of the melatonin metabolite AMK (N1-acetyl-5-methxykynuramine) with reactive nitrogen species: Formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK. J Pineal Res 2005; 39: 251–260
  • Martín M, Macías M, Escames G, León J, Acuña-Castroviejo D. Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 2000; 14: 1677–1679
  • Escames G, López LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, León J, Rodríguez MI, Acuña-Castroviejo D. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of sepsis mice. J Pineal Res 2005; 17: 932–934
  • Acuña-Castroviejo D, Escames G, López LC, Hitos AB, León J. Melatonin and nitric oxide: Two required antagonists for mitochondrial homeostasis. Endocrine 2005; 27: 159–168
  • León J, Acuña-Castroviejo D, Escames G, Tan DX, Reiter RJ. AMT mitigates mitochondrial malfunction. J Pineal Res 2005; 38: 1–9
  • Acuña-Castroviejo D, Martín M, Macías M, Escames G, León J, Khaldy H, Reiter RJ. Melatonin, mitochondria and cellular bioenergetics. J Pineal Res 2001; 30: 65–74
  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem 1951; 193: 265–275
  • Esterbauer H, Cheeseman KH. Determination of aldehidic lipid peroxidation products: Malonaldehide and 4-hydroxynonenal. Meth Enzymol 1990; 186: 407–421
  • Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Rad Biol Med 1999; 27: 922–935
  • Hissin PJ, Hilf R. A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 1976; 74: 214–226
  • Barrientos A. In vivo and in organelle assessment of OXPHOS activities. Methods 2002; 26: 307–316
  • Brusque AM, Rosa RB, Schuck PF, Dalcin KB, Ribeiro CAJ, Silva CG, Wannmacher CMD, Dutra-Filho CS, Wyse ATS, Briones P, Wajner M. Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 2002; 40: 593–601
  • Krauss GJ, Pissarek M, Blasing I. HPLC of nucleic acid components with volatile mobile phases: Part 2. Separations on polymeric supports. J High Result Chromatogr 1997; 20: 693–696
  • Karbownik M, Reiter RJ, Garcia JJ, Tan DX, Qi W, Manchester LC. Melatonin reduces rat hepatic macromolecular damage due to oxidative stress caused by delta-aminolevulinic acid. Biochim Biophys Acta 2000; 1523: 140–146
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(47)95
  • Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation, and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 1994; 74: 121–137
  • Rebrin I, Kamzalov S, Sohal RS. Effects of age and caloric restriction on glutathione redox state in mice. Free Rad Biol Med 2003; 35: 626–635
  • Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Hepatic mitochondrial dysfunction in senescence-accelerated mice: Correction by long-term, orally administered physiological levels of aMT. J Pineal Res 2002; 33: 127–133
  • Okatani Y, Eakatsuki A, Reiter RJ, Miyahara Y. Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 2002; 23: 639–644
  • Okatani Y, Waskatsuli A, Reiter RJ. Melatonin protects hepatic mitochondrial respiratory Chain activity in senescence-accelerated mice. J Pineal Res 2002; 32: 143–148
  • Martín M, Macías M, León J, Escames G, Khaldy H, Acuña-Castroviejo D. Melatonin increases the activity of the complexes I and IV of the electron transport chain and the ATP production in rat brain and liver mitochondria. Int J Biochem Cell Biol 2002; 34: 348–357
  • López LC, Escames G, Tapias V, Utrilla MP, León J, Acuña-Castroviejo D. Identification of an inducible nitric oxide synthase in diaphragm mitochondria from septic mice. Its relation with mitochondrial dysfunction and prevention by melatonin. Int J Biochem Cell Biol 2006; 38: 267–278
  • Castillo C, Salazar V, Ariznavarreta C, Vara E, Tresguerres JA. Effect of melatonin administration on parameters related to oxidative damage in hepatocytes isolated from old Wistar rats. J Pineal Res 2005; 38: 140–146
  • Bongiorno D, Ceraulo L, Ferrugia M, Filizzola F, Ruggirello A, Liveri VT. Localization and interactions of melatonin in dry cholesterol/lecithin mixed reversed micelles used as cell membrane models. J Pineal Res 2005; 38: 292–298
  • Urata Y, Honma S, Goto S, Todoroki S, Iida T, Cho S, Honma, Kondo T. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Rad Biol Med 1999; 27: 838–847
  • Siu AW, Maldonado M, Sanchez-Hidalgo M, Tan DX, Reiter RJ. Protective effects of melatonin in experimental free radical-related ocular diseases. J Pineal Res 2006; 40: 101–109
  • Lardone PJ, Alvarez-Garcia O, Carrillo-Vico A, Vega-Naredo I, Caballero B, Guerrero JM, Coto-Montes A. Inverse correlation between endogenous melatonin levels and oxidative damage in some tissues of SAM P8 mice. J Pineal Res 2006; 40: 153–157
  • Sastre J, Millan A, Garcia de la Asuncion J, Pla R, Pallardo JG, O'Connor E, Martin JA, Droy-Lefaix MT, Viña JA. Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Rad Biol Med 1998; 24: 298–304
  • Rebrin I, Zicker S, Wedekind KJ, Paetau-Robinson I, Packer L, Sohal RS. Effect of antioxidant-enriched diets on glutathione redox status in tissue homogenates and mitochondria of the senescence-accelerated mouse. Free Rad Biol Med 2005; 39: 549–557

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.