153
Views
36
CrossRef citations to date
0
Altmetric
Original

Consequences of MnSOD interactions with nitric oxide: Nitric oxide dismutation and the generation of peroxynitrite and hydrogen peroxide

, , , &
Pages 62-72 | Received 30 May 2006, Published online: 07 Jul 2009

References

  • Michelson AM. Free radicals and disease: Tretment and clinical application with superoxide dismutase. Free radicals, aging and degenerative diseases, JE Johnson, R Walford, D Harmon, J Miguel. A.R. Liss Inc., New York 1986; 263
  • Stroupe ME, DiDonato M, Tainer AJ. Manganese superoxide dismutase. Handbook of metalloproteins, A Messerschmidt, R Huber, T Poulos, K Wieghardt. Chichester, NY, John Wiley & Sons 2001; 941–951
  • MacMillan-Crow LA, Cruthirds DL. Invited review: Manganese superoxide dismutase in disease. Free Radic Res 2001; 34: 325–336
  • MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 1996; 93: 11853–11858
  • MacMillan-Crow LA, Cruthirds DL, Ahki KM, Sanders PW, Thompson JA. Mitochondrial tyrosine nitration precedes chronic allograft nephropathy. Free Radic Biol Med 2001; 31: 1603–1608
  • Cruthirds DL, Novak L, Akhi KM, Sanders PW, Thompson JA, MacMillan-Crow LA. Mitochondrial targets of oxidative stress during renal ischemia/reperfusion. Arch Biochem Biophys 2003; 412: 27–33
  • Pittman KM, MacMillan-Crow LA, Peters BP, Allen JB. Nitration of manganese superoxide dismutase during ocular inflammation. Exp Eye Res 2002; 74: 463–471
  • Gray KD, MacMillan-Crow LA, Simovic MO, Stain SC, May AK. Pulmonary MnSOD is nitrated following hepatic ischemia-reperfusion. Surg Infect (Larchmt) 2004; 5: 66–173
  • Guo W, Adachi T, Matsui R, Xu S, Jiang B, Zou MH, Kirber M, Lieberthal W, Cohen RA. Quantitative assessment of tyrosine nitration of manganese superoxide dismutase in angiotensin II-infused rat kidney. Am J Physiol Heart Circ Physiol 2003; 285: H1396–H1403
  • van der LB, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000; 192: 1731–1744
  • Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimizu K, Umegae N, Hayase N, Shiono H, Kobayashi S. Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann Neurol 2000; 47: 524–527
  • Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA 2001; 98: 12056–12061
  • MacMillan-Crow LA, Crow JP, Thompson JA. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 1998; 37: 1613–1622
  • Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 1998; 273: 14085–14089
  • Quijano C, Hernandez-Saavedra D, Castro L, McCord JM, Freeman BA, Radi R. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J Biol Chem 2001; 276: 11631–11638
  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001; 30: 463–488
  • Niketic V, Stojanovic S, Nikolic A, Spasic M, Michelson AM. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: An in vitro study. Free Radic Biol Med 1999; 27: 992–996
  • Stojanovic S, Stanic D, Nikolic M, Spasic M, Niketic V. Iron catalyzed conversion of NO into nitrosonium (NO+) and nitroxyl (HNO/NO − ) species. Nitric Oxide 2004; 11: 256–262
  • Ford PC, Lorkovic IM. Mechanistic aspects of the reactions of nitric oxide with transition-metal complexes. Chem Rev 2002; 102: 993–1018
  • Lewis RS, Deen WM. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 1994; 7: 568–574
  • Donald CE, Hughes MN, Thompson JM, Bonner FT. Photolysis of the N = N bond in trioxodinitrate: Reaction between triplet NO− and O2 to form peroxynitrite. Inorg Chem 1986; 25: 2676–2677
  • Wink DA, Feelisch M. Formation and detection of nitroxyl and nitrous oxide. Methods in nitric oxide research, M Feelisch, JS Stamler. Wiley, London 1996; 403–412
  • Keele BB, Jr., McCord JM, Fridovich I. Superoxide dismutase from escherichia coli B. A new manganese-containing enzyme. J Biol Chem 1970; 245: 6176–6181
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972; 247: 3170–3175
  • Beckman SJ, Wink AD, Crow PJ. Nitric oxide and peroxynitrite. Methods in nitric oxide research, M Feelisch, JS Stamler. John Wiley and sons, London 1996; 61–70
  • Malencik DA, Sprouse JF, Swanson CA, Anderson SR. Dityrosine: Preparation, isolation, and analysis. Anal Biochem 1996; 242: 202–213
  • Di Iorio E. Preparation of derivatives of ferrous and ferric hemoglobin. Methods Enzymol 1981; 76: 57–72
  • Lee M, Arosio P, Cozzi A, Chasteen ND. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry 1994; 33: 3679–3687
  • Sharpe MA, Cooper CE. Reactions of nitric oxide with mitochondrial cytochrome c: A novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J 1998; 332: 9–19
  • Stamler J, Feelisch M. Preparation and detection of S-nitrosothiols. Methods in nitric oxide research, M Feelisch, JS Stamler. John Wiley and sons, London 1996; 521–540
  • Kirsch M, de Groot H. Formation of peroxynitrite from reaction of nitroxyl anion with molecular oxygen. J Biol Chem 2002; 277: 13379–13388
  • Ioannidis I, de Groot H. Cytotoxicity of nitric oxide in Fu5 rat hepatoma cells: Evidence for co-operative action with hydrogen peroxide. Biochem J 1993; 296: 341–345
  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982; 126: 131–138
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Hogg N, Singh RJ, Kalyanaraman B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett 1996; 382: 223–228
  • Shafirovich V, Lymar SV. Nitroxyl and its anion in aqueous solutions: Spin states, protic equilibria, and reactivities toward oxygen and nitric oxide. Proc Natl Acad Sci USA 2002; 99: 7340–7345
  • Miranda KM, Espey MG, Yamada K, Krishna M, Ludwick N, Kim S, Jourd'heuil D, Grisham MB, Feelisch M, Fukuto JM, Wink DA. Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem 2001; 276: 1720–1727
  • Miranda KM, Dutton AS, Ridnour LA, Foreman CA, Ford E, Paolocci N, Katori T, Tocchetti CG, Mancardi D, Thomas DD, Espey MG, Houk KN, Fukuto JM, Wink DA. Mechanism of aerobic decomposition of Angeli's salt (sodium trioxodinitrate) at physiological pH. J Am Chem Soc 2005; 127: 722–731
  • Hughes MN. Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochim Biophys Acta 1999; 1411: 263–272
  • Reif A, Zecca L, Riederer P, Feelisch M, Schmidt HH. Nitroxyl oxidizes NADPH in a superoxide dismutase inhibitable manner. Free Radic Biol Med 2001; 30: 803–808
  • van d V, Eiserich JP, O'Neill CA, Halliwell B, Cross CE. Tyrosine modification by reactive nitrogen species: A closer look. Arch Biochem Biophys 1995; 319: 341–349
  • MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys 1999; 366: 82–88
  • Kanner J. Nitric oxide and metal-catalyzed reactions. Methods Enzymol 1996; 269: 218–229
  • McBride AG, Borutaite V, Brown GC. Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. Biochim Biophys Acta 1999; 1454: 275–288
  • Kim YS, Han S. Nitric oxide protects Cu,Zn-superoxide dismutase from hydrogen peroxide-induced inactivation. FEBS Lett 2000; 479: 25–28
  • Edwards RA, Baker HM, Whittaker MM, Whittaker JW, Jameson GB, Baker EN. Crystal structure of Escherichia coli manganese superoxide dismutase at 2.1—ANG. resolution. J Biol Inorg Chem 1998; 3: 161–171
  • Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Jr., Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 1992; 71: 107–118
  • Goldstein S, Czapski G, Lind J, Merenyi G. Tyrosine nitration by simultaneous generation of (√)NO and O-(2) under physiological conditions. How the radicals do the job. J Biol Chem 2000; 275: 3031–3036
  • Tyler DD. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J 1975; 147: 493–504
  • Groves JT. Peroxynitrite: Reactive, invasive and enigmatic. Curr Opin Chem Biol 1999; 3: 226–235
  • Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med 2004; 25: 17–26
  • Farias-Eisner R, Chaudhuri G, Aeberhard E, Fukuto JM. The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J Biol Chem 1996; 271: 6144–6151
  • Jay-Gerin JP, Ferradini C. Are there protective enzymatic pathways to regulate high local nitric oxide (NO) concentrations in cells under stress conditions?. Biochimie 2000; 82: 161–166
  • Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 2000; 97: 8841–8848
  • Hopkin KA, Papazian MA, Steinman HM. Functional differences between manganese and iron superoxide dismutases in Escherichia coli K-12. J Biol Chem 1992; 267: 24253–24258

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.