86
Views
8
CrossRef citations to date
0
Altmetric
Original

Postanoxic damage of microglial cells is mediated by xanthine oxidase and cyclooxygenase

, , &
Pages 145-152 | Received 18 May 2006, Published online: 07 Jul 2009

References

  • Kontos CD, Wei EP, Williams JI, Kontos HA, Povlishock JT. Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo. Am J Physiol 1992; 263: H1234–H1242
  • Dirnagl U, Lindauer U, Them A, Schreiber S, Pfister HW, Koedel U, Reszka R, Freyer D, Villringer A. Global cerebral ischemia in the rat: Online monitoring of oxygen free radical production using chemiluminescence in vivo. J Cereb Blood Flow Metab 1995; 15: 929–940
  • Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001; 21: 2–14
  • Chan PH. Oxygen radicals in focal cerebral ischemia. Brain Pathol 1994; 4(1)59–65
  • Kontos HA, George E. Brown memorial lecture. Oxygen radicals in cerebral vascular injury. Circ Res 1985; 57: 508–516
  • Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1989; 1: 165–211
  • Tomimoto H, Akiguchi I, Wakita H, Lin JX, Budka H. Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans. Acta Neuropathol (Berl) 2000; 99: 26–30
  • Spranger M, Kiprianova I, Krempien S, Schwab S. Reperfusion increases the release of reactive oxygen intermediates in murine microglia. J Cereb Blood Flow Metab 1998; 18: 670–674
  • Gibson CL, Coughlan TC, Murphy SP. Glial nitric oxide and ischemia. Glia 2005; 50: 417–426
  • Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrowderived and present antigen in vivo. Science 1988; 239: 290–292
  • Perry VH, Gordon S. Macrophages and microglia in the nervous system. Trends Neurosci 1988; 11: 273–277
  • Streit WJ, Graeber MB, Kreutzberg GW. Functional plasticity of microglia: A review. Glia 1988; 1: 301–307
  • Frei K, Siepl C, Groscurth P, Bodmer S, Schwerdel C, Fontana A. Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol 1987; 17: 1271–1278
  • Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE. Free radicals and phagocytic cells. FASEB J 1995; 9: 200–209
  • Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992; 587: 250–256
  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992; 149: 2736–2741
  • Zielasek J, Tausch M, Toyka KV, Hartung HP. Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell Immunol 1992; 141: 111–120
  • McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159–163
  • Akundi RS, Candelario-Jalil E, Hess S, Hull M, Lieb K, Gebicke-Haerter PJ, Fiebich BL. Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide activated primary rat microglia. Glia 2005; 51: 199–208
  • Sairanen T, Ristimaki A, Karjalainen-Lindsberg ML, Paetau A, Kaste M, Lindsberg PJ. Cyclooxygenase-2 is induced globally in infracted human brain. Ann Neurol 1998; 43: 738–747
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552: 335–344
  • Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 1997; 23: 361–366
  • Sitte N, Merker K, Grune T. Proteasome-dependent degradation of oxidized proteins in MRC-5 fibtroblasts. FEBS Lett 1998; 440: 399–402
  • Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN, Jr, Sunderman FW, Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde–thiobarbituric acid adduct. Clin Chem 1987; 33: 214–220
  • Sommerburg O, Grune T, Klee S, Ungemach FR, Siems WG. Formation of 4-hydroxynonenal and further aldehydic mediators of inflammation during bromotrichlormethane treatment of rat liver cells. Med Inflamm 1993; 2: 27–31
  • Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999; 27: 612–616
  • Keston AS, Brandt R. The analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 1965; 11: 1–5
  • Gabriel C, Camins A, Sureda FX, Aquirre L, Escubedo E, Pallas M, Camarasa J. Determination of nitric oxide generation in mammalian neurons using dichlorofluorescin diacetate and flow cytometry. J Pharmacol Toxicol Methods 1997; 38: 93–98
  • Possel H, Noack H, Augustin W, Keilhoff G, Wolf G. 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett 1997; 416: 175–178
  • Stadtman ER. Importance of individuality in oxidative stress and aging. Free Radic Biol Med 2002; 33: 597–604
  • Carrard G, Bulteau AL, Petropoulos I, Friguet B. Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 2002; 34: 1461–1474
  • Gyenes M, De Groot H. Prostanoid release by Kupffer cells upon hypoxia-reperfusion: Role of pHi and Cai2+. Am J Physiol 1993; 264: G535–G540
  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 1991; 88: 6368–6371
  • Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988; 336: 385–388
  • Garthwaite J, Garthwaite G, Palmer RM, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 1989; 172: 413–416
  • Kwon NS, Nathan CF, Gilker C, Griffith OW, Matthews DE, Stuehr DJ. l-citrulline production from l-arginine by macrophage nitric oxide synthase. The ureido oxygen derives from dioxygen. J Biol Chem 1990; 265: 13442–13445
  • Wu S, Tamaki N, Nagashima T, Yamaguchi M. Reactive oxygen species in reperfusion injury of rat brain capillary endothelial cells. Neurosurgery 1998; 43: 577–583
  • Roy RS, McCord JM. Superoxide and ischemia: Conversion of xanthine dehydrogenase to xanthine oxidase. Oxy radicals and their scavenger systems, R Greenwald, G Cohen. Elsevier, New York, NY 1983; Vol. 2: 143–145, Cellular and molecular aspects
  • Elmquist JK, Breder CD, Sherin JE, Scammell TE, Hickey WF, Dewitt D, Saper CBJ. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. Comp Neurol 1997; 381: 119–129
  • Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB. Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide. J Clin Invest 1995; 95: 1669–1675
  • Collaco-Moraes Y, Aspey B, Harrison M, de Belleroche J. Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemia. J Cereb Blood Flow Metab 1996; 16: 1366–1372
  • Miettinen S, Fusco FR, Yrjanheikki J, Keinanen R, Hirvonen T, Roivainen R, Narhi M, Hokfelt T, Koistinaho J. Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci USA 1997; 94: 6500–6505
  • Nogawa S, Zhang F, Ross ME, Iadecola C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 1997; 17: 2746–2755
  • Sanz O, Estrada A, Ferrer I, Planas AM. Differential cellular distribution and dynamics of HSP70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience 1997; 80: 221–232
  • Ohtsuki T, Kitagawa K, Yamagata K, Mandai K, Mabuchi T, Matsushita K, Yanagihara T, Matsumoto M. Induction of cyclooxygenase-2 mRNA in gerbil hippocampal neurons after transient forebrain ischemia. Brain Res 1996; 736: 353–736

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.