85
Views
17
CrossRef citations to date
0
Altmetric
Original

Oxidative stress-inducible antioxidant adaptive response during prostaglandin F-induced luteal cell death in vivo

, , &
Pages 251-259 | Received 20 Jun 2006, Published online: 07 Jul 2009

References

  • Sies H. Oxidative stress: From basic research to clinical application. Am J Med 1991; 91: 31S–38S
  • Halliwell B, Gutteridge JMC. Protection against oxidants in biological systems: The superoxide theory of oxygen toxicity. Free Radical in Biology and Medicine, B Halliwell, JMC Gutteridge. Clarendon Press, Oxford 1989; 86–123
  • Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994; 17: 235–248
  • McCord JM, Fridovich I. Superoxide dismutase. An enzymatic function for erythrocuprein. J Biol Chem 1969; 244: 6049–6055
  • Weisiger RA, Fridovich I. Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J Biol Chem 1973; 248: 4791–4793
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605
  • Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1999; 31: 273–300
  • Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: Where are we now?. J Lab Clin Med 1992; 119: 598–620
  • Chandra J, Samali A, Orrentius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 2000; 29: 323–333
  • Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5: 415–418
  • Martin KR, Barrett JC. Reactive oxygen species as double-edged swords in cellular processes: Low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 2002; 21: 71–75
  • Riley JCM, Behrman HR. Oxygen radicals and reactive oxygen species in reproduction. Proc Soc Exp Biol Med 1991; 198: 781–791
  • Fujii J, Iuchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 2005; 3: 43–52
  • Agarwal A, Allamaneni SSR. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 2004; 9: 338–347
  • Kuehl FA, Jr, Egan RW. Prostaglandins, arachidonic acid, and inflammation. Science 1980; 210: 978–984
  • Arosh JA, Banu SK, Chapdelaine P, Madore E, Sirois J, Fortier MA. Prostaglandin biosynthesis, transport, and signaling in corpus luteum: A basis for autoregulation of luteal function. Endocrinology 2004; 145: 2551–2560
  • Laloraya M, Kumar GP, Laloraya MM. Changes in the levels of superoxide anion radical and superoxide dismutase during the estrous cycle of rattus norvegicus and induction of superoxide dismutase in rat ovary by lutropin. Biochem Biophys Res Commun 1988; 157: 146–153
  • Sawada M, Carlson JC. Superoxide radical production in plasma membrane samples from regressing rat corpora lutea. Can J Physiol Pharmacol 1989; 67: 465–471
  • Behrman HR, Kodaman PH, Preston SL, Gao S. Oxidative stress and the ovary. J Soc Gynecol Investig 2001; 8: S40–S42
  • Cross AR, Jones OT. Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1991; 1057: 281–298
  • Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem 1989; 58: 79–110
  • Menegatos J, Chadio S, Kalogiannis T, Kouskoura T, Kouimtzis S. Endocrine events during the periestrous period and the subsequent estrous cycle in ewes after estrus synchronization. Theriogenology 2003; 59: 1533–1543
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RF. Protein measurement with folin phenol reagent. J Biol Chem 1951; 193: 265–275
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47: 469–474
  • Beers B, Sizer WA. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952; 195: 133–139
  • Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984; 105: 114–121
  • Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol 1985; 113: 484–490
  • Schanbacher BD. Radioimmunoassay of ovine and bovine serum progesterone without extraction and chromatography. Endocr Res Commun 1979; 6: 265–277
  • Dharmarajan AM, Hisheh S, Singh B, Parkinson S, Tilly KI, Tilly JL. Antioxidans mimic the ability of chorionic gonadotropin to suppress apoptosis in the rabbit corpus luteum in vitro: A novel role for superoxide dismutase in regulating bax expression. Endocrinology 1999; 140: 2555–2561
  • Nakamura T, Ishigami T, Makino N, Sakamoto K. The down-regulation of glutathione peroxidase causes bovine luteal cell apoptosis during structural luteolysis. J Biochem 2001; 129: 937–942
  • Nakamura T, Sakamoto K. Reactive oxygen species up-regulates cyclooxygenase-2, p53 and Bax mRNA expression in bovine luteal cells. Biochem Biophys Res Commun 2001; 284: 203–210
  • Sato T, Iesaka T, Jyujo T, Taya K, Ishikawa J. Prostaglandin-induced ovarian ascorbic acid depletion. Endocrinology 1974; 95: 417–420
  • Aten RF, Duarte KM, Behrman HR. Regulation of ovarian antioxidant vitamins, reduced glutathione, and lipid peroxidation by luteinizing hormone and prostaglandin F2 alpha. Biol Reprod 1992; 46: 401–407
  • Petroff BK, Ciereszko RE, Dabrowski K, Ottobre AC, Pope WF, Ottobre JS. Depletion of vitamin C from pig corpora lutea by prostaglandin F2 alpha-induced secretion of the vitamin. J Reprod Fertil 1998; 112: 243–247
  • Endo T, Aten RF, Wang F, Behrman HR. Coordinate induction and activation of metalloproteinase and ascorbate depletion in structural luteolysis. Endocrinology 1993; 133: 690–698
  • Foyouzi N, Cai Z, Sugimoto Y, Stocco C. Changes in the expression of steroidogenic and antioxidant genes in the mouse corpus luteum during luteolysis. Biol Reprod 2005; 72: 1134–1141
  • Murdoch WJ. Temporal relationships between stress protein induction, progesterone withdrawal, and apoptosis in corpora lutea of ewes treated with prostaglandin F2α. J Anim Sci 1995; 73: 1789–1792
  • Rueda B, Wegner JA, Marion SL, Wahlen DD, Hoyer PB, Internucleosomal DNA. fragmentation in ovine luteal tissue associated with luteolysis: In vivo and in vitro analysis. Biol Reprod 1995; 52: 305–312
  • Rueda BR, Hendry IR, Tilly JL, Hamernik DL. Accumulation of caspase-3 messenger ribonucleic acid and induction of caspase activity in the ovine corpus luteum following prostaglandin F2alpha treatment in vivo. Biol Reprod 1999; 60: 1087–1092
  • Sawada M, Carlson JC. Rapid plasma membrane changes in superoxide radical formation, fluidity, and phospholipase A2 activity in the corpus luteum of the rat during induction of luteolysis. Endocrinology 1991; 128: 2992–2998
  • Minegishi K, Tanaka M, Nishimura O, Tanigaki S, Miyakoshi K, Ishimoto H, Yoshimura Y. Reactive oxygen species mediate leukocyte–endothelium interactions in prostaglandin F2α-induced luteolysis in rats. Am J Physiol Endocrinol Metab 2002; 283: E1308–E1315
  • Knapen MF, Zusterzeel PL, Peters WH, Steegers EA. Glutathione and glutathione-related enzymes in reproduction. A review. Eur J Obstet Gynecol Reprod Biol 1999; 82: 171–184
  • Levonen AL, Dickinson DA, Moellering DR, Mulcahy RT, Forman HJ, Darley-Usmar VM. Biphasic effects of 15-deoxy-12,14-prostaglandin J2 on glutathione induction and apoptosis in human endothelial cells. Arterioscler Thromb Vasc Biol 2001; 21: 1846–1851
  • Lim SY, Jang JH, Na HK, Lu SC, Rahman I, Surh YJ. 15-deoxy-12,14-prostaglandin J2 protects against nitrosative PC12 cells death through up-regulation of intracellular glutathione synthesis. J Biol Chem 2004; 279: 46263–46270
  • Chen ZH, Yoshida Y, Saito Y, Sekine A, Noguchi N, Niki E. Induction of adaptive response and enhancement of PC12 cell tolerance by 7-hydroxycholesterol and 15-deoxy-12,14-prostaglandin J2 through up-regulation of cellular glutathione via different mechanisms. J Biol Chem 2006; 281: 14440–14445
  • Shikone T, Yamoto M, Kokawa K, Yamashita K, Nishimori K, Nakano R. Apoptosis of human corpora lutea during cyclic luteal regression and early pregnancy. J Clin Endocrinol Metab 1996; 81: 2376–2380
  • Rueda BR, Hendry IR, Hendry WJ, Stormshak F, Slayden OD, Davis JS. Decreased progesterone levels and progesterone receptor antagonist promote apoptotic cell death in bovine luteal cells. Biol Reprod 2000; 62: 269–276
  • Telleria CM, Goyeneche AA, Cavicchia JC, Stati AO, Deis RP. Apoptosis induced by antigestagen RU486 in rat corpus luteum of pregnancy. Endocrine 2001; 15: 147–155
  • Goyeneche AA, Deis RP, Gibori G, Telleria CM. Progesterone promotes survival of the rat corpus luteum in the absence of cognate receptors. Biol Reprod 2003; 68: 151–158
  • Okuda K, Korzekwa A, Shibaya M, Murakami S, Nishimura R, Tsubouchi M, Woclawek-Potocka I, Skarzynski DJ. Progesterone is a suppressor of apoptosis in bovine luteal cells. Biol Reprod 2004; 71: 2065–2071
  • Crawford DR, Davies KJ. Adaptive response and oxidative stress. Environ Health Perspect 1994; 102(Suppl 10)25–28
  • Wiese AG, Pacifici RE, Davies KJA. Transient adaptation of oxidative stress in mammalian cells. Arch Biochem Biophys 1995; 318: 231–240
  • Shull S, Heintz NH, Periasamy M, Manohar M, Janssen YM, Marsh JP, Mossman BT. Differential regulation of antioxidant enzymes in response to oxidants. J Biol Chem 1991; 266: 24398–24403
  • Lai CC, Peng M, Huang L, Huang WH, Chiu TH. Chronic exposure of neonatal cardiac myocytes to hydrogen peroxide enhances the expression of catalase. J Mol Cell Cardiol 1996; 28: 1157–1163
  • Sen P, Mukheriee S, Bhaumik G, Das P, Ganguly S, Choudhury N, Raha S. Enhancement of catalase activity by repetitive low-grade H2O2 exposures protects fibroblasts from subsequent stress-induced apoptosis. Mutat Res 2003; 529: 87–94
  • Chen ZH, Yoshida Y, Saito Y, Niki E. Adaptation to hydrogen peroxide enhances PC12 cell tolerance against oxidative damage. Neurosci Lett 2005; 383: 256–259

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.