365
Views
19
CrossRef citations to date
0
Altmetric
Original

Reactive oxygen and nitrogen species are involved in sorbitol-induced apoptosis of human erithroleukaemia cells K562

, , , , , , & show all
Pages 452-460 | Received 03 Aug 2006, Published online: 07 Jul 2009

References

  • Stoothoff WH, Johnson GV. Hyperosmotic stress-induced apoptosis and tau phosphorylation in human neuroblastoma cells. J Neurosci Res 2001; 65: 573–582
  • Galvez AS, Ulloa JA, Chiong M, Criollo A, Eisner V, Barros LF, Lavandero S. Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: Differential effects of sorbitol and mannitol. J Biol Chem 2003; 278: 38484–48494
  • Murata T, Goshima F, Yamauchi Y, Koshizuka T, Takakuwa H, Nishiyama Y. Herpes simplex virus type 2 US3 blocks apoptosis induced by sorbitol treatment. Microbes Infect 2002; 4: 707–712
  • Teramachi K, Izawa M. Rapid induction of apoptosis in human gastric cancer cell lines by sorbitol. Apoptosis 2000; 5: 181–187
  • Izawa M, Teramachi K. Down-regulation of protein kinase C activity by sorbitol rapidly induces apoptosis in human gastric cancer cell lines. Apoptosis 2001; 6: 353–358
  • Koyama AH, Arakawa T, Adachi A. Characterization of apoptosis induced by sorbitol: A unique system for the detection of antiapoptotic activities of viruses. Microbes Infect 2000; 2: 599–606
  • Zvalova D, Cordier J, Mesnil M, Junier MP, Chneiweiss H. p38/SAPK2 controls gap junction closure in astrocytes. Glia 2004; 46: 323–333
  • Ii S, Ohta M, Kudo E, Yamaoka T, Tachikawa T, Moritani M, Itakura M, Yoshimoto K. Redox state-dependent and sorbitol accumulation-independent diabetic albuminuria in mice with transgene-derived human aldose reductase and sorbitol dehydrogenase deficiency. Diabetologia 2004; 47: 541–548
  • Hamaoka R, Fujii J, Miyagawa J, Takahashi M, Kishimoto M, Moriwaki M, Yamamoto K, Kajimoto Y, Yamasaki Y, Hanafusa T, Matsuzawa Y, Taniguchi N. Overexpression of the aldose reductase gene induces apoptosis in pancreatic beta-cells by causing a redox imbalance. J Biochem (Tokyo) 1999; 126: 41–47
  • Leto G, Pricci F, Amadio L, Iacobini C, Cordone S, Diaz-Horta O, Romeo G, Barsotti P, Rotella CM, di Mario U, Pugliese G. Increased retinal endothelial cell monolayer permeability induced by the diabetic milieu: Role of advanced non-enzymatic glycation and polyol pathway activation. Diabetes Metab Res Rev 2001; 17: 448–458
  • Lapolla A, Fedele D, Traldi P. Glyco-oxidation in diabetes and related diseases. Clin Chim Acta 2005; 357: 236–250
  • Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 2002; 283: E1–E11
  • Ramana KV, Friedrich B, Tammali R, West MB, Bhatnagar A, Srivastava SK. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes 2005; 54: 818–829
  • Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005; 59: 365–373
  • Winiarska K, Drozak J, Wegrzynowicz M, Fraczyk T, Bryla J. Diabetes-induced changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidney–cortex tubules. Mol Cell Biochem 2004; 261: 91–98
  • Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002; 18: 872–879
  • Peiro C, Lafuente N, Matesanz N, Cercas E, Llergo JL, Vallejo S, Rodriguez-Manas L, Sanchez-Ferrer CF. High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br J Pharmacol 2001; 133: 967–974
  • Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistances. Antioxid Redox Signal 2005; 7: 1040–1052
  • McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, Lei XG. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci 2004; 101: 8852–8857
  • Da Ros R, Assaloni R, Ceriello A. Molecular targets of diabetic vascular complications and potential new drugs. Curr Drug Targets 2005; 6: 503–509
  • Cowell RM, Russell JW. Nitrosative injury and antioxidant therapy in the management of diabetic neuropathy. J Investig Med 2004; 52: 33–44
  • Cheng X, Xia Z, Leo JM, Pang CC. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes. Eur J Pharmacol 2005; 519: 118–126
  • Bredt DS. Endogenous nitric oxide synthsesis: Biological functions and pathophysiology. Free Radic Res 1999; 31: 577–596
  • Alderton KW, Cooper CE, Knowelesm GR. Nitric oxide synthases: Structure function and inhibition. Biochem J 2001; 357: 593–615
  • Mabley JG, Soriano FG. Role of nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic vascular dysfunction. Curr Vasc Pharmacol 2005; 3: 247–252
  • Cowell RM, Russell JW. Nitrosative injury and antioxidant therapy in the management of diabetic neuropathy. J Investig Med 2004; 52: 33–44
  • Lim SY, Jang JH, Na HK, Lu SC, Rahman I, Surh YJ. 15-Deoxy-delta12,14-prostaglandin J(2) protects against nitrosative PC12 cell death through up-regulation of intracellular glutathione synthesis. J Biol Chem 2004; 279: 46263–46270
  • Orzechowski A, Lokociejewska M, Muras P, Hocquette JF. Preconditioning with millimolar concentrations of vitamin C or N-acetylcysteine protects L6 muscle cells insulin-stimulated viability and DNA synthesis under oxidative stress. Life Sci 2002; 71: 1793–1808
  • Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res 1994; 22: 5506–5507
  • Sinibaldi Salimei P, Marfè G, Di Renzo L, Di Stefano C, Giganti MG, Filomeni G, Ciriolo MR. The interference of rosmarinic acid in the DNA fragmentation induced by osmotic shock. Front Biosci 2007; 12: 1308–1317
  • Methods in nitric oxide research, HHHW Schmidt, M Kelm, M Feelish, JS Stamler. John Wiley & Sons, Inc., New York 1996; 491–497
  • Possel H, Noack H, Augustin W, Keilhoff G, Wolf G. 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett 1997; 416: 175–178
  • Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5: 415–418
  • Korhonen R, Kankaanranta H, Lahti A, Lahde M, Knowles RG, Moilanen E. Bi-directional effects of the elevation of intracellular calcium on the expression of inducible nitric oxide synthase in J774 macrophages exposed to low and to high concentrations of endotoxin. Biochem J 2001; 354: 351–358
  • Tfelt-Hansen J, Ferreira A, Yano S, Kanuparthi D, Romero JR, Brown EM, Chattopadhyay N. Calcium-sensing receptor activation induces nitric oxide production in H-500 Leydig cancer cells. Am J Physiol Endocrinol Metab 2005; 288: E1206–E1213
  • Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie 2005; 60: 62–65
  • Psotova J, Kolar M, Sousek J, Svagera Z, Vicar J, Ulrichova J. Biological activities of Prunella vulgaris extract. Phytother Res 2003; 17: 1082–1087
  • Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal inflammatory responses: Anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 2004; 25: 549–557
  • Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 2000; 7: 7–13
  • Qiao S, Li W, Tsubouchi R, Haneda M, Murakami K, Takeuchi F, Nisimoto Y, Yoshino M. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic Res 2005; 39: 995–1003
  • Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T. Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in d-galactosamine (d-GalN)-sensitized mice. Free Radic Biol Med 2002; 33: 798–806
  • Pesesse X, Leyman A, Luyten T, Missiaen L, Erneux C. Hyperosmotic stress stimulates inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate formation independently of bis-diphosphoinositol tetrakisphosphate modulation. Biochem Biophys Res Commun 2005; 336: 157–162
  • Tamareille S, Mignen O, Capiod T, Rucker-Martin C, Feuvray D. High glucose-induced apoptosis through store-operated calcium entry and calcineurin in human umbilical vein endothelial cells. Cell Calcium 2006; 39: 47–55
  • Reinehr R, Becker S, Braun J, Eberle A, Grether-Beck S, Haussinger D. Endosomal acidification and activation of NADPH oxidase isoforms are upstream events in hyperosmolarity-induced hepatocyte apoptosis. J Biol Chem 2006, [Epub ahead of print]
  • Warskulat U, Schliess F, Haussinger D. Compatible organic osmolytes and osmotic modulation of inducible nitric oxide synthetase in RAW 264.7 mouse macrophages. Biol Chem 1998; 379: 867–874

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.