136
Views
19
CrossRef citations to date
0
Altmetric
Original

Oxidative stress induction by cis-4-decenoic acid: Relevance for MCAD deficiency

, , , , , , & show all
Pages 1261-1272 | Received 26 Jun 2007, Published online: 07 Jul 2009

References

  • Rinaldo P, Raymond K, Al-Odaib A, Bennett M. Clinical and biochemical features of fatty acid oxidation disorders. Curr Opin Pediatr 1998; 10: 615–621
  • Roe CR, Ding J. Mitochondrial fatty acid oxidation disorders. The metabolic and molecular bases of inherited disease, CR Scriver, AL Beaudet, WS Sly, D Valle. McGraw-Hill, New York 2001; 1909–1963
  • Martynez G, Jimenez-Sanchez G, Divry P, Vianey-Saban C, Riudor E, Rodes M, Briones P, Ribes A. Plasma free fatty acids in mitochondrial fatty acid oxidation defects. Clin Chim Acta 1997; 267: 143–154
  • Derks TG, Reijngoud DJ, Waterham HR, Gerver WJ, van den Berg MP, Sauer PJ, Smit GP. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: clinical presentation and outcome. J Pediatr 2006; 148: 665–670
  • Wilson CJ, Champion MP, Collins JE, Clayton PT, Leonard JV. Outcome of medium chain acyl-CoA dehydrogenase deficiency after diagnosis. Arch Dis Child 1999; 80: 459–462
  • Mayell SJ, Edwards L, Reynolds FE, Chakrapani AB. Late presentation of medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2007; 30: 104
  • Leung KC, Hammond JW, Chabra S, Carpenter KH, Potter M, Wilcken B. A fatal neonatal case of medium-chain acyl-coenzyme A dehydrogenase deficiency with homozygous A- > G985 transition. J Pediatr 1992; 121: 965–968
  • Wilcken B, Carpenter KH, Hammond J. Neonatal symptoms in medium chain acyl coenzyme A dehydrogenase deficiency. Arch Dis Child 1993; 69: 292–294
  • Maclean K, Rasiah VS, Kirk EP, Carpenter K, Cooper S, Lui K, Oei J. Pulmonary haemorrhage and cardiac dysfunction in a neonate with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. Acta Paediatr 2005; 94: 114–116
  • Ruitenbeek W, Poels PJ, Turnbull DM, Garavaglia B, Chalmers RA, Taylor RW, Gabreels FJ. Rhabdomyolysis and acute encephalopathy in late onset medium chain acyl-CoA dehydrogenase deficiency. J Neurol Neurosurg Psychiatry 1995; 58: 209–214
  • Raymond K, Bale AE, Barnes CA, Rinaldo P. Medium-chain acyl-CoA dehydrogenase deficiency: sudden and unexpected death of a 45 year old woman. Genet Med 1999; 1: 293–294
  • Feillet F, Steinmann G, Vianey-Saban C, de Chillou C, Sadoul N, Lefebvre E, Vidailhet M, Bollaert PE. Adult presentation of MCAD deficiency revealed by coma and severe arrythmias. Intensive Care Med 2003; 29: 1594–1597
  • Coates PM. New developments in the diagnosis and investigation of mitochondrial fatty acid oxidation disorders. Eur J Pediatr 1994; 153: 49–56
  • Santer R, Schmidt-Sommerfeld E, Leung YK, Fischer JE, Lebenthal E. Medium-chain acyl CoA dehydrogenase deficiency: electron microscopic differentiation from Reye syndrome. Eur J Pediatr 1990; 150: 111–114
  • Onkenhout W, Venizelos V, van der Poel PFH, Van der Heuvel MPM, Poorthuis BJHM. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders. Clin Chem 1995; 41: 1467–1474
  • Kim CS, O'tuama LA, Mann JD, Roe CR. Effect of increasing carbon chain length on organic acid transport by the choroid plexus: a potential factor in Reye's syndrome. Brain Res 1983; 259: 340–343
  • de Assis DR, Ribeiro CA, Rosa RB, Schuck PF, Dalcin KB, Vargas CR, Wannmacher CM, Dutra-Filho CS, Wyse AT, Briones P, Wajner M. Evidence that antioxidants prevent the inhibition of Na+,K + -ATPase activity induced by octanoic acid in rat cerebral cortex in vitro. Neurochem Res 2003; 28: 1255–1263
  • Reis de Assis D, Maria RC, Borba Rosa R, Schuck PF, Ribeiro CA, da Costa Ferreira G, Dutra-Filho CS, Terezinha de Souza Wyse A, Duval Wannmacher CM, Santos Perry ML, Wajner M. Inhibition of energy metabolism in cerebral cortex of young rats by the medium-chain fatty acids accumulating in MCAD deficiency. Brain Res 2004; 1030: 141–151
  • de Assis DR, Maria RC, Ferreira GC, Schuck PF, Latini A, Dutra-Filho CS, Wannmacher CM, Wyse AT, Wajner M. Na+, K+ ATPase activity is markedly reduced by cis-4-decenoic acid in synaptic plasma membranes from cerebral cortex of rats. Exp Neurol 2006; 197: 143–149
  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA. Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 2001; 388: 261–266
  • Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996; 328: 85–92
  • Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 1990; 186: 407–421
  • Gonzalez Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 1991; 10: 93–100
  • Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994; 233: 357–363
  • LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992; 5: 227–231
  • Lissi E, Pascual C, Del Castillo MD. Luminol luminescence induced by 2,2'-Azo-bis(2-amidinopropane) thermolysis. Free Radic Res Commun 1992; 17: 299–311
  • Lissi E, Salim-Hanna M, Pascual C, del Castillo MD. Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 1995; 18: 153–158
  • Browne RW, Armstrong D. Reduced glutathione and glutathione disulfide. Methods Mol Biol 1998; 108: 347–352
  • Aksenov MY, Markesbery WR. Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 2001; 302: 141–145
  • Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121–126
  • Bannister JV, Calabrese L. Assays for SOD. Methods Biochem Anal 1987; 32: 279–312
  • Wendel A. Glutathione peroxidase. Methods Enzymol 1981; 77: 325–332
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275
  • Touma EH, Charpentier C. Medium chain acyl-CoA dehydrogenase deficiency. Arch Dis Child 1992; 67: 142–145
  • Iafolla AK, Thompson RJ, Jr, Roe CR. Medium-chain acyl-coenzyme A dehydrogenase deficiency: clinical course in 120 affected children. J Pediatr 1994; 124: 409–415
  • Wilcken B, Hammond J, Silink M. Morbidity and mortality in medium chain acyl coenzyme A dehydrogenase deficiency. Arch Dis Child. 1994; 70: 410–412
  • Pollitt RJ, Leonard JV. Prospective surveillance study of medium chain acyl-CoA dehydrogenase deficiency in the UK. Arch Dis Child 1998; 79: 116–119
  • Perper JA, Ahdab-Barmada M. Fatty liver, encephalopathy, and sudden unexpected death in early childhood due to medium-chain acyl-coenzyme A dehydrogenase deficiency. Am J Forensic Med Pathol 1992; 13: 329–334
  • Smith ET, Jr, Davis GJ. Medium-chain acylcoenzyme-A dehydrogenase deficiency. Not just another Reye syndrome. Am J Forensic Med Pathol 1993; 14: 313–318
  • Mayatepek E, Koch HG, Hoffmann GF. Hyperuricaemia and medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 1997; 20: 842–843
  • Perez-Severiano F, Rios C, Segovia J. Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease. Brain Res 2000; 862: 234–237
  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF. Increased oxidative damage to DNA in a transgenic mouse of Huntington's disease. J Neurochem 2001; 79: 1246–1249
  • Behl C, Moosmann B. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 2002; 383: 521–536
  • Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG. Tryptophan metabolism and oxidative stress in patients with Huntington's disease. J Neurochem 2005; 93: 611–623
  • Berg D, Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 2006; 17: 5–17
  • Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L. Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimer Dis 2006; 10: 59–73
  • Latini A, Scussiato K, Rosa RB, Leipnitz G, Llesuy S, Bello-Klein A, Dutra-Filho CS, Wajner M. Induction of oxidative stress by L-2-hydroxyglutaric acid in rat brain. J Neurosci Res 2003; 74: 103–110
  • Latini A, Scussiato K, Rosa RB, Llesuy S, Bello-Klein A, Dutra-Filho CS, Wajner M. D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur J Neurosci 2003; 17: 2017–2022
  • Latini A, Scussiato K, Leipnitz G, Dutra-Filho CS, Wajner M. Promotion of oxidative stress by 3-hydroxyglutaric acid in rat striatum. J Inherit Metab Dis 2005; 28: 57–67
  • de Oliveira Marques F, Hagen ME, Pederzolli CD, Sgaravatti AM, Durigon K, Testa CG, Wannmacher CM, de Souza Wyse AT, Wajner M, Dutra-Filho CS. Glutaric acid induces oxidative stress in brain of young rats. Brain Res 2003; 964: 153–158
  • Barschak AG, Sitta A, Deon M, de Oliveira Marques MH, Haeser A, Dutra-Filho CS, Wajner M, Vargas CR. Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 2006; 21: 279–286
  • Sgaravatti AM, Sgarbi MB, Testa CG, Durigon K, Pederzolli CD, Prestes CG, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS. γ-Hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochem Int 2007; 50: 564–570
  • Halliwell B, Gutteridge JMC. Detection of free radicals and others reactive species: trapping and fingerprinting. Free radicals in biology and medicine4th ed, B Halliwell, JMC Gutteridge. Oxford University Press, Oxford 1999; 351–425
  • Schönfeld P, Wojtczak L. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochem Biophys Acta 2007; 1767: 1032–1040
  • Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 2002; 32: 790–796
  • Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 1998; 56: 359–384
  • Keston AS, Brandt R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 1965; 11: 1–5
  • Reiter RJ, Carneiro RC, Oh CS. Melatonin in relation to cellular antioxidative defense mechanisms. Horm Metab Res 1997; 29: 363–372
  • Reiter R, Tang L, Garcia JJ, Munoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 1997; 60: 2255–2271
  • Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 2001; 34: 237–256
  • Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 2006; 1757: 573–589
  • Halliwell B, Gutteridge JMC. Measurement of reactive species. Free radicals in biology and medicine, B Halliwell, JMC Gutteridge. Oxford University Press, Oxford 2007; 268–340
  • Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C, Zilmer M. The cerebrocortical areas in normal brain aging and in Alzheimer's disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 2001; 26: 353–361
  • Genet S, Kale RK, Baquer NZ. Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Mol Cell Biochem 2002; 236: 7–12
  • Jafari M. Dose- and time-dependent effects of sulfur mustard on antioxidant system in liver and brain of rat. Toxicology 2007; 231: 30–39
  • Halliwell B, Gutteridge JMC. Oxygen radicals and nervous system. Trends Neurosci 1996; 8: 22–26
  • Méndez-Álvarez E, Soto-Otero R, Hermida-Aeijeiras A, López-Real AM, Labandeira-García JL. Effects of aluminium and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson's disease. Biochim Biophys Acta 2001; 1586: 155–168
  • Hoffmann GF, Seppel CK, Holmes B, Mitchell L, Christen HJ, Hanefeld F, Rating D, Nyhan WL. Quantitative organic acid analysis in cerebrospinal fluid and plasma: reference values in a pediatric population. J Chromatogr 1993; 617: 1–10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.