82
Views
6
CrossRef citations to date
0
Altmetric
Original

Analysis of reactive oxygen species and antioxidant defenses in complex I deficient patients revealed a specific increase in superoxide dismutase activity

, , , , , , & show all
Pages 415-427 | Received 27 Oct 2007, Published online: 07 Jul 2009

References

  • DiMauro S, Hirano M. Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 2005; 15: 276–286
  • Suzuki H, Kumagai T, Goto A, Sugiura T. Increase in intracellular hydrogen peroxide and upregulation of nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells. Biochem Biophys Res Commun 1998; 249: 542–545
  • Esposito LA, Melov S, Panvo A, Cottrell BA, Wallace DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 1999; 96: 4820–4825
  • Wallace DC. Mitochondrial disease in man and mouse. Science 1999; 283: 1482–1488
  • Luo X, Pitkanen S, Kassovska-Bratinova S, Robinson BH, Lehotay D. Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with Complex I deficiency. J Clin Invest 1997; 99: 2877–2882
  • Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U. Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci USA 1996; 93: 12382–12387
  • de la Asuncion JG, Millán A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Satre J, Viña J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 1996; 10: 333–338
  • Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human heart. Biochem Biophys Res Commun 1992; 189: 979–985
  • Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997; 17: 3–8
  • Du G, Mouithys-Mickalad A, Sluse FE. Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro. Free Radic Biol Med 1998; 25: 1066–1074
  • Bolter CJ, Chefurka W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch Biochem Biophys 1990; 278: 65–72
  • Pitkanen S, Robinson BH. Mitochondrial complex I deficiency leads to increases production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 1996; 98: 345–351
  • Wani AA, Ahanger SH, Bapat SA, Rangrez AY, Hingankar N, Suresh CG, Barnabas S, Patole MS, Shouche YS. Analysis of mitochondrial DNA sequences in childhood encephalomyopathies reveals new disease-associated variants. PLoS ONE 2007;29:e942.
  • Rush GF, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR. Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol 1985; 78: 473–483
  • Nijtamans LG, Henderson NS, Holt IJ. Blue native electrophoresis to study mitochondrial and other protein complexes. Methods 2002; 26: 327–334
  • Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?. Br J Pharmacol 2004; 142: 231–255
  • El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 1999; 5: 720–725
  • Del Maestro RF, McDonald W. Oxidative enzymes in tissue homogenates. Handbook of methods for oxygen radical research, RA Greenwald. CRC Press, Boca Raton, FL 1985; 291–296
  • Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984; 105: 114–121
  • Oberley LW, Spitz DZ. Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol 1984; 105: 457–464
  • Habig WH, Pabst MJ, Jakoby WB. Gluthatione-Stransferase:the first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130–7139
  • Halliwell B, Gutteridge JM. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 1995; 18: 125–126
  • Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 1980; 191: 421–427
  • Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 1985; 237: 408–414
  • Chan TS, Teng S, Wilson JX, Galati G, Khan S, O'Brien PJ. Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1). Free Radic Res 2002; 36: 421–427
  • Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 2004; 13: 805–815
  • Pang CY, Lee HC, Wei YH. Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabet Res Clin Pract 2001; 54(Suppl 2)S45–S56
  • Wei YH, Lu CY, Wei CY, Ma YS, Lee HC. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol 2001; 44: 1–11
  • Mattiazzi M, Vijayvergiya C, Gajewski CD, DeVivo DC, Lenaz G, Wiedmann M, Manfredi G. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum Mol Genet 2004; 13: 869–879
  • Beretta S, Mattavelli L, Sala G, Tremolizzo L, Schapira AHV, Martinuzzi A, Carelli V, Ferrarese C. Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain 2004; 127: 2183–2189
  • Floreani M, Napoli E, Martinuzzi A, Pantano G, De Riva V, Trevisan R, Bisetto E, Valente L, Carelli V, Dabbeni-Sala F. Antioxidant defences in cybrids harboring mtDNA mutations associated with Leber's hereditary optic neuropathy. FEBS J 2005; 272: 1124–1135
  • Wong A, Cavelier L, Collins-Schramm HE, Seldin MF, McGrogan M, Savontaus ML, Cortopassi GA. Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Hum Mol Genet 2002; 11: 431–438
  • Chowdhury SK, Raha S, Tarnopolsky MA, Singh G. Increased expression of mitochondrial glycerophosphate dehydrogenase and antioxidant enzymes in prostate cancer cell lines/cancer. Free Radic Res 2007; 41: 1116–1124
  • Vives-Bauza C, Gonzalo R, Manfredi G, Garcia-Arumi E, Andreu AL. Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA. Neurosci Lett 2006; 391: 136–141
  • Vergani L, Florean M, Russell A, Ceccon M, Napoli E, Cabrelle A, Valente L, Bragantini F, Leger B, Dabbeni-Sala F. Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines. Eur J Biochem 2004; 271: 3646–3656
  • de Haan JB, Cristiano F, Iannello R, Bladier C, Kelner MJ, Kola I. Elevation in the ratio of Cu,Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum Mol Genet 1996; 5: 283–292
  • Li N, Oberley TD, Oberley LW, Zhong W. Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: Mechanistic studies. J Cell Physiol 1998; 175: 359–369
  • Pigeolet E, Remacle J. Susceptibility of glutathione peroxidase to proteolysis after oxidative alterations by peroxides and hydroxyl radicals. Free Radic Biol Med 1991; 11: 191–195
  • Pigeolet E, Corbisier P, Houbion A, Lambert D, Michileis C, Raes M, Zachary MD, Remacle J. Glutathione peroxidase, superoxide dismutase and Catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 1990; 15: 283–297
  • Cyrne L, Martins L, Fernandes L, Marinho HS. Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med 2003; 34: 385–393
  • Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ. Quinone-induced oxidative stress elevates glutathione and induces c-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem 1994; 269: 26512–26517
  • Tian L, Shi MM, Forman HJ. Increased transcription of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Arch Biochem Biophys 1997; 342: 126–133
  • Piccolo G, Banfi P, Azan G, Rizzuto R, Sandona D, Bellomo G. Biological markers of oxidative stress in mitochondrial myopathies with progressive external ophthalmoplegia. J Neurol Sci 1991; 105: 57–60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.