225
Views
22
CrossRef citations to date
0
Altmetric
Miscellaneous

Ebselen attenuates cyclophosphamide-induced oxidative stress and DNA damage in mice

&
Pages 966-977 | Received 03 Aug 2008, Published online: 07 Jul 2009

References

  • Ardais AP, Santos FW, Nogueira CW. Ebselen attenuates cadmium-induced testicular damage in mice. J Appl Toxicol 2008; 28: 322–328
  • Fujisawa S, Kadoma Y. Kinetic studies of the radical-scavenging activity of ebselen, a seleno-organic compound. Anticancer Res 2005; 25: 3989–3994
  • Muller A, Cadenas E, Graf P, Sies H. A novel biologically active seleno-organic compound–I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol 1984; 33: 3235–3239
  • Sies H, Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv Pharmacol 1997; 38: 229–246
  • Takasago T, Peters EE, Graham DI, Masayasu H, Macrae IM. Neuroprotective efficacy of ebselen, an anti-oxidant with anti-inflammatory actions, in a rodent model of permanent middle cerebral artery occlusion. Br J Pharmacol 1997; 122: 1251–1256
  • Porciuncula LO, Rocha JB, Boeck CR, Vendite D, Souza DO. Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neurons. Neurosci Lett 2001; 299: 217–220
  • Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H. Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 1998; 29: 12–17
  • Parnham M, Sies H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opin Investig Drugs 2000; 9: 607–619
  • Dhanarajan R, Abraham P, Isaac B. Protective effect of ebselen, a selenoorganic drug, against gentamicin-induced renal damage in rats. Basic Clin Pharmacol Toxicol 2006; 99: 267–272
  • Husain K, Morris C, Whitworth C, Trammell GL, Rybak LP, Somani SM. Protection by ebselen against cisplatin-induced nephrotoxicity: antioxidant system. Mol Cell Biochem 1998; 178: 127–133
  • Yang CF, Liu J, Shen HM, Ong CN. Protective effect of ebselen on aflatoxin B1-induced cytotoxicity in primary rat hepatocytes. Pharmacol Toxicol 2000; 86: 156–161
  • Saluk-Juszczak J, Wachowicz B, Wojtowicz H, Kloc K, Bald E, Glowacki R. Novel selenoorganic compounds as modulators of oxidative stress in blood platelets. Cell Biol Toxicol 2006; 22: 323–329
  • Tiano L, Fedeli D, Santoni G, Davies I, Wakabayashi T, Falcioni G. Ebselen prevents mitochondrial ageing due to oxidative stress: in vitro study of fish erythrocytes. Mitochondrion 2003; 2: 428–436
  • Wu Q, Huang K. Effect of selenium compounds on the damage induced by oxysterol on rat arterial walls. Biol Trace Elem Res 2006; 112: 273–282
  • Saad SY, Najjar TA, Arafah MM. Cardioprotective effects of subcutaneous ebselen against daunorubicin-induced cardiomyopathy in rats. Basic Clin Pharmacol Toxicol 2006; 99: 412–417
  • Arakawa M, Ishimura A, Arai Y, Kawabe K, Suzuki S, Ishige K, Ito Y. N-Acetylcysteine and ebselen but not nifedipine protected cerebellar granule neurons against 4-hydroxynonenal-induced neuronal death. Neurosci Res 2007; 57: 220–229
  • Burger ME, Fachinetto R, Zeni G, Rocha JB. Ebselen attenuates haloperidol-induced orofacial dyskinesia and oxidative stress in rat brain. Pharmacol Biochem Behav 2005; 81: 608–615
  • Johnsen-Soriano S, Bosch-Morell F, Miranda M, Asensio S, Barcia JM, Roma J, Monfort P, Felipo V, Romero FJ. Ebselen prevents chronic alcohol-induced rat hippocampal stress and functional impairment. Alcohol Clin Exp Res 2007; 31: 486–492
  • Mirkes PE. Cyclophosphamide teratogenesis: a review. Teratog Carcinog Mutagen 1985; 5: 75–88
  • Roy P, Yu LJ, Crespi CL, Waxman DJ. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27: 655–666
  • Roberts JC, Francetic DJ, Zera RT. Chemoprotection against cyclophosphamide-induced urotoxicity: comparison of nine thiol protective agents. Anticancer Res 1994; 14: 389–395
  • Adams JD, Jr, Klaidman LK Acrolein-induced oxygen radical formation. Free Radic Biol Med 1993;15:187–193.
  • Misonou Y, Asahi M, Yokoe S, Miyoshi E, Taniguchi N. Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: implications for smoke angiopathy. Nitric Oxide 2006; 14: 180–187
  • Korkmaz A, Topal T, Oter S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol Toxicol 2007; 23: 303–312
  • Korkmaz A, Oter S, Sadir S, Coskun O, Topal T, Ozler M, Bilgic H. Peroxynitrite may be involved in bladder damage caused by cyclophosphamide in rats. J Urol 2005; 173: 1793–1796
  • Holl V, Coelho D, Silbernagel L, Keyser JF, Waltzinger C, Dufour P, Bischoff PL. Prevention of nitrogen mustard-induced apoptosis in normal and transformed lymphocytes by ebselen. Biochem Pharmacol 2000; 60: 1565–1577
  • Hoshida S, Aoki K, Nishida M, Yamashita N, Igarashi J, Hori M, Kuzuya T, Tada M. Effects of preconditioning with ebselen on glutathione metabolism and stress protein expression. J Pharmacol Exp Ther 1997; 281: 1471–1475
  • Zhao R, Holmgren A. A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J Biol Chem 2002; 277: 39456–39462
  • Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–358
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275
  • Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979; 582: 67–78
  • Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175: 184–191
  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000; 35: 206–221
  • Collins AR, Raslova K, Somorovska M, Petrovska H, Ondrusova A, Vohnout B, Fabry R, Dusinska M. DNA damage in diabetes: correlation with a clinical marker. Free Radic Biol Med 1998; 25: 373–377
  • Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. The comet assay: topical issues. Mutagenesis 2008; 23: 143–151
  • Jena GB, Nemmani KV, Kaul CL, Ramarao P. Protective effect of a polyherbal formulation (Immu-21) against cyclophosphamide-induced mutagenicity in mice. Phytother Res 2003; 17: 306–310
  • Schmid W. The micronucleus test. Mutat Res 1975; 31: 9–15
  • Hayashi M, Sofuni T, Ishidate M, Jr. An application of Acridine Orange fluorescent staining to the micronucleus test. Mutat Res 1983; 120: 241–247
  • Gollapudi BB, McFadden LG. Sample size for the estimation of polychromatic to normochromatic erythrocyte ratio in the bone marrow micronucleus test. Mutat Res 1995; 347: 97–99
  • Holden HE, Majeska JB, Studwell D. A direct comparison of mouse and rat bone marrow and blood as target tissues in the micronucleus assay. Mutat Res 1997; 391: 87–89
  • Tripathi DN, Jena GB. Astaxanthin inhibits cytotoxic and genotoxic effects of cyclophosphamide in mice germ cells. Toxicology 2008; 248: 96–103
  • Maccubbin AE, Caballes L, Riordan JM, Huang DH, Gurtoo HL. A cyclophosphamide/DNA phosphoester adduct formed in vitro and in vivo. Cancer Res 1991; 51: 886–892
  • Selvakumar E, Prahalathan C, Sudharsan PT, Varalakshmi P. Chemoprotective effect of lipoic acid against cyclophosphamide-induced changes in the rat sperm. Toxicology 2006; 217: 71–78
  • Strauss G, Westhoff MA, Fischer-Posovszky P, Fulda S, Schanbacher M, Eckhoff SM, Stahnke K, Vahsen N, Kroemer G, Debatin KM. 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ 2008; 15: 332–343
  • Collins AR, Dusinska M, Gedik CM, Stetina R. Oxidative damage to DNA: do we have a reliable biomarker?. Environ Health Perspect 1996; 104(Suppl 3)465–469
  • Collins AR, Duthie SJ, Dobson VL. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 1993; 14: 1733–1735
  • Kumaravel TS Vilhar B Faux SP Jha AN Comet Assay measurements: a perspective. Cell Biol Toxicol 2007; (Article in press).
  • Hu RQ, Mehter H, Nadasdy T, Satoskar A, Spetie DN, Rovin BH, Hebert L. Severe hemorrhagic cystitis associated with prolonged oral cyclophosphamide therapy: case report and literature review. Rheumatol Int 2008; 28: 1161–1164
  • Park YS, Misonou Y, Fujiwara N, Takahashi M, Miyamoto Y, Koh YH, Suzuki K, Taniguchi N. Induction of thioredoxin reductase as an adaptive response to acrolein in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2005; 327: 1058–1065
  • Wang X, Zhang J, Xu T. Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo. Toxicol Appl Pharmacol 2007; 218: 88–95
  • Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP. Thioredoxin and its role in toxicology. Toxicol Sci 2004; 78: 3–14
  • Inglot AD, Zielinska-Jenczylik J, Piasecki E, Syper L, Mlochowski J. Organoselenides as potential immunostimulants and inducers of interferon gamma and other cytokines in human peripheral blood leukocytes. Experientia 1990; 46: 308–311
  • Zhang J, Ma K, Wang H. Cyclophosphamide suppresses thioredoxin reductase in bladder tissue and its adaptive response via inductions of thioredoxin reductase and glutathione peroxidase. Chem Biol Interact 2006; 162: 24–30
  • Crook TR, Souhami RL, McLean AE. Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res 1986; 46: 5029–5034
  • Stankiewicz A, Skrzydlewska E, Sulkowska M, Sulkowski S. Effect of amifostine on lung oxidative stress after cyclophosphamide therapy. Bull Vet Inst Pulawy 2002; 49: 87–94
  • Haenen GR, Vermeulen NP, Tail Tin Tsoi JN, Ragetli HM, Timmerman H, Blast A. Activation of the microsomal glutathione-s-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein. Biochem Pharmacol 1988; 37: 1933–1938
  • Tripathi DN, Pawar AA, Vikram A, Ramarao P, Jena GB. Use of the alkaline comet assay for the detection of transplacental genotoxins in newborn mice. Mutat Res 2008; 653: 134–139
  • Van Goethem F, Lison D, Kirsch-Volders M. Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt-tungsten carbide. Mutat Res 1997; 392: 31–43
  • Vrzoc M, Petras ML. Comparison of alkaline single cell gel (Comet) and peripheral blood micronucleus assays in detecting DNA damage caused by direct and indirect acting mutagens. Mutat Res 1997; 381: 31–40
  • He JL, Chen WL, Jin LF, Jin HY. Comparative evaluation of the in vitro micronucleus test and the comet assay for the detection of genotoxic effects of X-ray radiation. Mutat Res 2000; 469: 223–231
  • Raisuddin S, Jha AN. Relative sensitivity of fish and mammalian cells to sodium arsenate and arsenite as determined by alkaline single-cell gel electrophoresis and cytokinesis-block micronucleus assay. Environ Mol Mutagen 2004; 44: 83–89
  • El-Bayoumy K. The protective role of selenium on genetic damage and on cancer. Mutat Res 2001; 475: 123–139
  • Cotgreave IA, Duddy SK, Kass GE, Thompson D, Moldeus P. Studies on the anti-inflammatory activity of ebselen. Ebselen interferes with granulocyte oxidative burst by dual inhibition of NADPH oxidase and protein kinase C. Biochem Pharmacol 1989; 38: 649–656
  • Wang JF, Komarov P, Sies H, de Groot H. Inhibition of superoxide and nitric oxide release and protection from reoxygenation injury by Ebselen in rat Kupffer cells. Hepatology 1992; 15: 1112–1116
  • Tamasi V, Jeffries JM, Arteel GE, Falkner KC. Ebselen augments its peroxidase activity by inducing nrf-2-dependent transcription. Arch Biochem Biophys 2004; 431: 161–168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.