1,911
Views
338
CrossRef citations to date
0
Altmetric
Original

Involvement of ROS in BBB dysfunction

, &
Pages 348-364 | Received 29 Nov 2008, Published online: 09 Sep 2009

References

  • Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview structure, regulation and clinical implications. Neurobiol Dis 2004; 16: 1–13
  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-( production. Brain Res 2005; 1038: 208–215
  • Mooradian AD. Effect of aging on the blood-brain barrier. Neurobiol Aging 1988; 9: 31–39
  • Balda MS, Flores-Maldonado C, Cereijido M, Matter K. Multiple domains of occludin are involved in the regulation of paracellular permeability. J Cell Biochem 2000; 78: 85–96
  • Nitta T, Hata M, Gotch S, Seo Y, Sasaki H, Hashimoto N, Furuse H, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deificent mice. J Cell Biol 2003; 161: 653–660
  • Royo NC, Shimizu S, Schouten JW, Stover JF, McIntosh TK. Pharmacology of traumatic brain injury. Curr Opin Phamacol 2003; 3: 27–32
  • McQuaid S, Kirk J. The blood–brain barrier in multiple sclerosis. Int Congress Series 2005; 1277: 235–243
  • Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 2005; 39: 51–70
  • Garcia Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 2008. doi: 10.1016/j.neubiorev.2008.04.001.
  • Olesen SP. Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain. Acta Physiol Scand 1987; 129: 181–187
  • Agarwal R, Shukla GS. Potential role of cerebral glutathione in the maintenance of blood–brain barrier integrity in rat. Neurochem Res 1999; 24: 1507–1514
  • Kamiya T, Katayama Y, Kashiwagi F, Terashi A. The role of bradykinin in mediating ischemic oedema in rats. Stroke 1993; 24: 591–596
  • Relton J, Beckey V, Hanson W, Whalley E. CP-0597, a selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion. Stroke 1997; 28: 1430–1436
  • Prat A, Biernacki K, Pouly S, Nalbantoglu J, Couture R, Antel JP. Kinin B1 receptor expression and function on human brain endothelial cells. J Neuropathol Exp Neurol 2000; 59: 896–906
  • Bhattacharya SK, Rao PJ, Brumleve SJ, Paramar SS. Effects of intracerebroventricular administration of bradykinin on rat brain serotonin and prostaglandins. Res Commun Chem Path Pharmac 1986; 54: 355–366
  • Easton AS, Abbott NJ. Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood–brain barrier. Brain Res 2002; 953: 157–169
  • Sarker MH, Fraser PA. Evidence that bradykinin increases permeability of single cerebral microvessels via free radicals. J Physiol 1994; 479P: 36P
  • Candelario-Jalil E, Taheri S, Yang Y, Sood R, Grossetete M, Estrada EY, Fiebich BL, Rosenberg GA. Cyclooxygenase inhibition limits blood–brain barrier disruption following intracerebral injection of tumor necrosis factor-α in the rat. J Pharmacol Exp Ther 2007; 323: 488–498
  • Moochhala SM, Lu J, Xing MC, Anuar F, Ng KC, Yang KL, Whiteman M, Atan S. Mercaptoethylguanidine inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expressions induced in rats after fluid-percussion brain injury. J Trauma 2005; 59: 450–457
  • Black KL, Hoff JT. Leukotrienes increase blood-brain barrier permeability in rats. Ann Neurol 1985; 18: 349–351
  • Minami T, Okazaki J, Kawabata A, Kawaki H, Okazaki Y, Tohno Y. Roles of nitric oxide and prostaglandins in the increased permeability of blood–brain barrier caused by lipopolysacharride. Envt Toxicol Pharmacol 1998; 5: 35–41
  • Rubinek T, Levy R. Arachidonic acid increases the activity of the assembled NADPH oxides in cytoplasmic membranes and endosomes. Biochim Biophys Acta Mol Cell Res 1993; 1176: 51–58
  • Parpura V, Basarsky TA, Liu F, Jeftnija K, Jeftnija S, Haydon PG. Glutamate-mediated astrocytes-neuron signaling. Nature 1994; 369: 744–747
  • Schmidt H, Pollock JS, Nakane M, Forstermann U, Murad F. Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium 1992; 13: 427–434
  • Nakano S, Matsukado K, Black KL. Increased brain tumour microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide. Cancer Res 1996; 56: 4027–4031
  • Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y. Alcohol-induced oxidative stress in brain endothelial cells causes blood–brain barrier dysfunction. J Leukoc Biol 2005; 78: 1223–1232
  • Meyer DJ, Huxley VH. Capillary hydraulic conductivity is elevated by cGMP-dependent vasodilators. Circ Res 1992; 70: 382–391
  • Yuan Y, Granger HJ, Zawieja DC, Chilian WM. Histamine increases venular permeability via a phospholipase C-NO synthase-guanylate cyclase cascade. Am J Physiol Heart Circ Physiol 1993; 264: H1734–H1739
  • Myers DE, Larkins RG. Bradykinin-induced changes in phosphoinositides, inositol phosphate production and intracellular free calcium in cultured bovine aortic endothelial cells. Cell Signal 1989; 1: 335–343
  • Yuan SY. Protein kinase signaling in the modulation of microvascular permeability. Vasc Pharm 2002; 39: 213–223
  • Rathore R, Zheng Y, Niu C, Liu Q, Korde A, Ho Y, Wang Y. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKC signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008. doi: 10.1016/j.freeradbiomed.2008.06.012.
  • Xu H, Goettsch C, Xia N, Horke S, Morawietz H, Forstermann U, Li H. Differential roles of PKCα and PKCε in controlling the gene expression of Nox4 in human endothelial cells. Free Radic Biol Med 2008; 44: 1656–1667
  • Marshall LA, McCarte-Roshak A. Demonstration of similar calcium dependencies by mammalian high and low molecular mass phospholipase A2. Biochem Pharmacol 1992; 44: 1849–1858
  • Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP. NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 2007; 38: 3000–3006
  • Deng X, Wang X, Andersson R. Influence of antiinflammatory and antioxidant agents on endothelial permeability alterations induced by bradykinin. J Invest Surg 1996; 9: 337–349
  • Platt SR. The role of glutamate in central nervous system health and disease—a review. Vet J 2007; 173: 278–286
  • Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and the potential opportunities for intervention. Neurochem Int 2007; 51: 333–355
  • Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of brain ischemic damage. Neuropharmacology 2008. doi: 10.1016/j.neuropharm.2008.01.005.
  • Chen Z, Indyk JA, Bugge TH, Kombrinck KW, Degen JL, Strickland S. Neuronal death and blood–brain barrier breakdown after excitotoxic injury are independent processes. J Neurocsci 1999; 19: 9813–9820
  • Nitsch C, Hubauer H. Distant blood-brain barrier opening in subfields of the rat hippocampus after intrastriatal injections of kainic acid but not ibotenic acid. Neurosci Lett 1986; 64: 53–58
  • Emerich DF, Dean III RL, Bartus RT. The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct?. Exp Neurol 2002; 173: 168–181
  • Hannah S, Mecklenburgh J, Rahman I, Bellingan GJ, Greening A, Haslett C, Chilvers ER. Hypoxia prolongs neutrophil survival in vitro. FEBS Lett 1995; 372: 233–237
  • Fabian RH, Kent TA. Superoxide anion production during reperfusion is reduced by an antineutrophil antibody after prolonged cerebral ischemia—effect of neutrophil depletion on extracellular ascorbyl radical formation. Free Radic Biol Med 1999; 26: 355–361
  • Ferrari CC, Depino AM, Prada F, Muraro N, Campbell S, Podhajcer O, Perry VH, Anthony DC, Pitossi FJ. Reversible demyelination, blood–brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am J Pathol 2004; 165: 1827–1837
  • Bannister JV, Bellavite P, Davoli A, Thornalley PJ, Rossi F. The generation of hydroxyl radicals following superoxide production by neutrophil NADPH oxidase. FEBS Lett 1982; 150: 300–302
  • Bertram C, Misso NL, Fogel-Petrovic M, Figueroa C, Thompson PJ, Bhoola KD. Comparison of kinin B1 and B2 receptor expression in neutrophils of asthmatic and non-asthmatic subjects. Int Immunopharmacol 2007; 7: 1862–1868
  • Papini E, Grzeskowiak M, Bellavite P, Rossi F. Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils. FEBS Lett 1985; 190: 204–208
  • Maridonneau-Parini I, Tauber AI. Activation of NADPH-oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell-free system. Biochem Biophys Res Comm 1986; 138: 1099–1105
  • Morgan L, Shah B, Rivers LE, Barden L, Groom AJ, Chung R, Higazi D, Desmond H, Smith T, Staddon JM. Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience 2007; 147: 664–673
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552: 335–344
  • Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 2007; 583: 9–24
  • Swerdlow RH. Treating neurodegeneration by modifying mitochondria: potential solutions to a ‘complex’ problem. Antioxid Redox Signal 2007; 9: 1591–1603
  • Terzioglu M, Larsson NG. Mitochondrial dysfunction in mammalian ageing. Novartis Found Symp 2007; 287: 197–208
  • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1–13
  • Brouillet E, Jacquard C, Bizat N, Blum D. 3-nitropropinoic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease. J Neurochem 2005; 95: 1521–1540
  • Coles CJ, Edmondson DE, Singer TP. Inactivation of succinate dehydrogenase by 3-nitropropionate. J Biol Chem 1979; 254: 5161–5167
  • Pandey M, Varghese M, Sindhu KM, Sreetama S, Navneet AK, Monhanakumar KP, Usha R. Mitochondrial NAD+-linked state 3 respiration and complex I activity are compromised in the cerebral cortex of 3-nitropropionic acid-induced rat model of Huntington's disease. J Neurochem 2008; 104: 420–434
  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 2007; 120: 4155–4166
  • Byun HO, Kim HY, Lim JJ, Seo YH, Yoon G. Mitochondrial dysfunction by complex II inhibition delays overall cell cycle progression via reactive oxygen species production. J Cell Biochem 2008; 104: 1747–1759
  • Kim GW, Gasche Y, Grzeschik S, Copin J, Maier CM, Chan PH. Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropioninc acid: role of matrix metalloproteinase-9 in early blood–brain barrier disruption?. J Neurosci 2003; 23: 8733–8742
  • Soares HD, Hicks RR, Smith D, McIntosh TK. Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 1995; 15: 8223–8233
  • Bacher M, Weihe E, Dietzschold B, Meinhardt A, Vedder H, Gemsa D, Bette M. Borna disease virus-induced accumulation of macrophage migration inhibitory factor in rat brain astrocytes is associated with inhibition of macrophage infiltration. Glia 2002; 37: 291–306
  • Koshinaga M, Katayama Y, Fukushima M, Oshima H, Suma T, Takahata T. Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices. J Neurotrauma 2000; 17: 185–192
  • Bellander BM, Bendel O, Von Euler G, Ohlsson M, Svensson M. Activation of microglial cells and complement following traumatic injury in rat entorhinal-hippocampal slice cultures. J Neurotrauma 2004; 21: 605–615
  • Prat A, Biernacki K, Wosik K, Antel JP. Glial cell influence on the human blood–brain barrier. Glia 2001; 36: 145–155
  • Lynch NJ, Willis CL, Nolan CC, Roscher S, Fowler MJ, Weihe E, Ray DE, Schwaeble WJ. Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats. Mol Immunol 2004; 40: 709–716
  • Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer's disease brain. J Cell Mol Med 2008. doi: 10.111/j.1582-4934.2008.00434.x.
  • Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner HD, Meyermann R. Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 2000; 100: 313–322
  • Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem 2007; 14: 1189–1197
  • Johnston RB, Jr, Kitagawa S. Molecular basis for the enhanced respiratory burst of activated macrophages. Fed Proc 1985; 44: 2927–2932
  • Qian L, Gao X, Pei Z, Wu X, Block M, Wilson B, Hong JS, Flood PM. NADPH oxidase inhibitor DPI is neuroprotective at femtomolar concentrations through inhibition of microglia over-activation. Parkinsonism Relat Disord 2007; 13(Suppl 3)S316–S320
  • Cheret C, Gervais A, Lilli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause KH, Mallat M. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci 2008; 28: 12039–12051
  • Gehrmann J, Banati RB, Wiessner C, Hossmann KA, Kreutzberg GW. Reactive microglia in cerebral ischemia: an early mediator of tissue damage?. Neuropathol Appl Neurobiol 1995; 21: 277–289
  • Kim HS, Cho IH, Kim JE, Shin YJ, Jeon JH, Kim Y, Yang YM, Lee KH, Lee JW, Lee WJ, Ye SK, Chung MH. Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signalling in activated microglia. Free Radic Biol Med 2008; 45: 950–963
  • Farber K, Cheung G, Mitchell D, Wallis R, Weihe E, Schwaeble W, Kettenmann H. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J Neurosci Res 2008. doi: 10.1002/jnr.21875.
  • Jorens PG, Matthys KE, Bult H. Modulation of nitric oxide synthase activity in macrophages. Mediators Inflamm 1995; 4: 75–89
  • Marques CP, Cheeran MC, Palmquist JM, Hu S, Lokensgard JR. Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. J Neurovirol 2008; 14: 229–238
  • Stelzner TJ, Weil JV, O'Brien RF. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J Cell Physiol 1989; 139: 157–166
  • Hall NC, Carrey JM, Plante OJ, Chang M, Butterfield DA. Effect of 2-cyclohexane-1-one induced glutathione diminution on ischemia/reperfusion-induced alterations in the physical state of brain synaptosomal membrane protein and lipids. Neurosicence 1997; 77: 283–290
  • Huang CF, Hsu CJ, Liu SH, Lin-Shiau SY. Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K+-ATPase involved. Toxicol Lett 2008; 176: 188–197
  • Mertsch K, Blasig I, Grune T. 4-hydroxynonenal impairs the permeability of an in vitro rat blood–brain barrier. Neurosci Lett 2001; 314: 135–138
  • Shi F, Cavitt J, Audus KL. 21-aminosteroid and 2-aminomethyl chromans inhibition of arachnoid acid-induced lipid peroxidation and permeability enhancement in bovine brain microvessel endothelial cell monolayers. Free Radic Biol Med 1995; 19: 349–357
  • Smith SL, Scherzh HM, Hall ED. Protective effects of tirilazad mesylate and metabolite -89678 against blood-brain barrier damage after subarachnoid hemorrhage and lipid peroxidative neuronal injury. Neurosurgery 1996; 84: 229–233
  • Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 2008; 135: 2128–2140
  • Abbruscato TJ, Davis TP. Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: influence of astrocyte contact. Brain Res 1999; 842: 277–286
  • Pal D, Audus KL, Siahaan TJ. Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Res 1997; 747: 103–113
  • Reese TS, Karnovsky MJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 1967; 34: 207–217
  • Krizbai IA, Bauer H, Bresgen N, Eckl PM, Farkas A, Szatmari E, Traweger A, Wejksza K, Bauer HC. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell Mol Neurobiol 2005; 25: 129–139
  • Schreibelt G, Kooij G, Reijerkerk A, van Dooren R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig UE, Dijkstra CD, Ronken E, de Vries HE. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3-kinase and PKB signaling. FASEB J 2007; 21: 3666–3676
  • Lee H, Namkoong K, Kim D, Kim K, Cheong Y, Kim S, Lee W, Kim K. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res 2004; 68: 231–238
  • Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, Nagasawa K, Wada I, Sawada N. Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood–brain barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Res 2003; 290: 275–288
  • Wong V. Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Physiol 1997; 273: C1859–C1867
  • Schreibelt G, Musters RJP, Reijerkerk A, de Groot LR, van der Pol SMA, Hendrikx EML, Dopp ED, Dijkstra CD, Drukarch B, de Vries HE. Lipoic acid affects cellular migration into the central nervous system and stabilizes blood–brain barrier integrity. J Immunol 2006; 177: 2630–2637
  • Ridley AJ, Hall A. Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 1994; 13: 2600–2610
  • Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci 2007; 120: 3491–3499
  • Shiu C, Barbier E, Di Cello F, Choi HJ, Stins M. HIV-1 gp120 as well as alcohol affect blood–brain barrier permeability and stress fiber formation: involvement of reactive oxygen species. Alcohol Clin Exp Res 2007; 31: 130–137
  • Hirase T, Kawashima S, Wong E, Uemada T, Rikitake Y, Tsukita S, Yokoyama M, Staddon J. Regulation of tight junction permeability and occludin phosphorylation by RhoAp160ROCK-dependent and independent mechanism. J Biol Chem 2001; 276: 10423–10431
  • Reijerkerk A, Kooij G, van der Pol SMA, Khazen S, Dijkstra CD, de Vries HE. Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. FASEB J 2006; 20: E1901–E1909
  • Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J Neurochem 2007; 101: 566–576
  • Maier CM, Hsieh L, Crandall T, Narasimhan P, Chan PH. A new approach for the investigation of reperfusion-related brain injury. Biochem Soc Trans 2006; 34: 1366–1369
  • Morita-Fujimura Y, Fujimura M, Gasche Y, Copin JC, Chan PH. Overexpression of copper and zinc superoxide dismutase in transgenic mice prevents the induction and activation of matrix metalloproteinases after cold injury-induced brain trauma. J Cerebral Blood Flow Metab 2000; 20: 130–138
  • Nakashima J, Jato M, Akhand A, Suzuki H, Takeda K, Hossain K, Kawamoto Y. Redox-linked signal transduction pathways for protein tyrosine kinase activation. Antioxid Redox Signal 2002; 4: 517–531
  • Rosenberg GA, Estrada E, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998; 29: 2189–2195
  • Kim S, Bae Y, Bae S, Choi K, Yoon K, Koo T, Jang H, Yun I, Kim K, Kwon Y, Yoo M, Bae M. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κB activation in endothelial cells. Biochim Biophys Acta Mol Cell Res 2008; 1783: 886–895
  • Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PP. ICAM-1-coupled cytoskeleton rearrangements and transendothelial lymphocyte migration involves intracellular calcium signaling in brain endothelial cell lines. J Immunol 2000; 165: 3375–3383
  • Fabene PF, Mora GN, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Oxculati F, Sbarbati A, Butcher EC, Constatin G. role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008; 14: 1377–1383
  • Adamson P, Etienne S, Courand PO, Calder V, Greenwood J. Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a Rho-dependent pathway. J Immunol 1999; 162: 2964–2973
  • Pinsky DJ, Yan S, Lawson C, Naka Y, Chen J, Connolly ES, Jr, Stern DM. Hypoxia and modification of the endothelium: implications for regulation of vascular homeostatic properties. Sem Cell Biol 1995; 6: 283–294
  • Eugenin EA, Berman JW. Chemokine-dependent mechanisms of leukocyte trafficking across a model of the blood–brain barrier. Methods 2003; 29: 351–361
  • Doring A, Wild M, Vestwebeer D, Deutsch U, Engelhardt B. E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J Immunol 2007; 179: 8470–8479
  • Roy A, Jana A, Yatish K, Freidt MB, Fung YK, Martinson JA, Pahan K. Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: implications for neurodegenerative disease. Free Radic Biol Med 2008; 45: 686–699
  • Tsukimori K, Tsushima A, Fukushima K, Nakano H, Wake N. Neutrophil-derived reactive oxygen species can modulate neutrophil adhesion to endothelial cells in preeclampsia. Am J Hypertens 2008; 21: 587–591
  • Rattan V, Sultana C, Shen Y, Kalra VK. Oxidant stress-induced transendothelial migration of monocytes is linked to phosphorylation of PECAM-1. Am J Physiol 1997; 273: E453–E461
  • Shen JS, Meng XL, Moore DF, Quirk JM, Shayman JA, Schiffmann R, Kaneski CR. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 2008; 95: 163–168
  • Takano M, Meneshian A, Sheikh E, Yamakawa Y, Wilkins KB, Hopkins EA, Bulkley GB. Rapid upregulation of endothelial P-selectin expression via reactive oxygen species generation. Am J Physiol Heart Circ Physiol 2002; 283: H2054–H2061
  • Eugenin EA, Gamss R, Buckner C, Buono D, Klein RS, Schoenbaum EE, Calderon TM, Berman JW. Shedding of PECAM-1 during HIV infection: a potential role for soluble PECAM-1 in the pathogenesis of NeuroAIDS. J Leukoc Biol 2006; 79: 444–452
  • Coisne C, Faveeuw C, Delplace Y, Dehouck L, Miller F, Cecchelli R, Dehouck B. Differential expression of selectins by mouse brain capillary endothelial cells in vitro in response to distinct inflammatory stimuli. Neurosci Lett 2006; 392: 216–220
  • Cayrol R, Wosik K, Berard JL, Deodelet-Devillers A, Ifergan I, Kebir H, Haggani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 2007; 9: 137–145
  • Brandes RP, Miller FJ, Beer S, Haendeler J, Hoffmann J, Ha T, Holland SM, Gorlach A, Busse R. The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression. Free Radic Biol Med 2002; 32: 1116–1122
  • Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, Huang HC, Yang YJ, Yang KD. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1 and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 2004; 279: 10331–10337
  • Wang W, Dentler WL, Borchardt RT. VEGF increases BMEC monolayer permeability by affecting occluding expression and tight junction assembly. Am J Physiol Heart Circ Physiol 2001; 280: H434–H440
  • DeMaio L, Rouhanizadeh M, Reddy S, Sevanian A, Hwang J, Hsiai TK. Oxidized phospholipids mediate occluding expression and phosphorylation in vascular endothelial cells. Am J Physiol Heart Circ Physiol 2006; 290: H674–H683
  • Wang W, Merrill MJ, Borchardt RT. Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am J Physiol Cell Physiol 1996; 271: 1973–1980
  • Lagrange P, Romero IA, Minn A, Revest PA. Transendothelial permeability changes induced by free radicals in an in vitro model of the blood–brain barrier. Free Radic Biol Med 1999; 27: 667–672
  • Noble LJ, Maida N, Igarashi T. The blood-brain barrier after traumatic injury: vascular and parenchymal interactions. In: Sharma H.. Blood-Spinal Cord and Brain Barriers in Health and Disease1st ed.. Academic Press, Incorporated, 2004, pp. 419–435.
  • Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 2002; 9: 387–399
  • Valen G, Sonden A, Vaage J, Malm E, Kjellstrom BT. Hydrogen peroxide induces endothelial cell atypia and cytoskeleton depolymerization. Free Radic Biol Med 1999; 26: 1480–1488
  • Kontos CD, Wei EP, Williams JI, Kontos HA, Povlishock JT. Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo. Am J Physiol 1992;263(Heart Circ Physiol 32):H1234–H1242.
  • Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA. Oxygen radicals in cerebral ischemia. Am J Physiol 1992; 253(Heart Circ Physiol32): H1356–H1362
  • Mayhan WG. Nitric oxide donor-induced increase in permeability of the blood–brain barrier. Brain Res 2000; 866: 101–108
  • Hurst RD, Clark JB. Nitric oxide-induced blood-brain barrier dysfunction is not mediated by inhibition of mitochondrial respiratory chain activity and/or energy depletion. Nitric Oxide Biol Chem 1997; 1: 121–129
  • Boje KMK, Lakhman SS. Nitric oxide redox species exert differential permeability effects on the blood–brain barrier. J Pharmacol Exp Ther 2000; 293: 545–550
  • Utepbergenov DI, Mertsch K, Sporbert A, Tenz K, Paul M, Haseloff RF, Blasig IE. Nitric oxide protects blood–brain barrier in vitro from hypoxia/re-oxygenation-mediated injury. FEBS Lett 1998; 424: 197–201
  • Nathan C, Xie Q. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994; 269: 13725–13728
  • Scott GS, Bowman SR, Smith T, Flower RJ, Bolton C. Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-D-aspartate (NMDA) receptor activation. Biochem Pharmacol 2007; 73: 228–236
  • Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC. A peroxynitrite-dependent pathway is responsible for blood–brain barrier permeability changes during a central nervous system inflammatory response: TNF-α is neither necessary nor sufficient. J Immunol 2007; 178: 7334–7343
  • Kuhlmann CRW, Tamaki R, Gamerdinger M, Lessmann V, Behl C, Kempski O, Luhmann HJ. Inhibition of the myosin light chain kinase prevents hypoxia-induced blood–brain barrier disruption. J Neurochem 2007; 102: 501–507
  • Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76: 126–152
  • Winkler F, Koedel U, Kastenbauer S, Pfister HW. Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood–brain barrier breakdown. J Infect Dis 2001; 183: 1749–1759
  • Lu J, Moochhala S, Kaur C, Ling EA. Cellular inflammatory response associated with breakdown of the blood–brain barrier after closed head injury in rats. J Neurotrauma 2001; 18: 399–408
  • Boje KMK. Inhibition of nitric oxide synthase attenuates blood–brain barrier disruption during experimental meningitis. Brain Res 1996; 720: 75–83
  • Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 1997; 23: 134–147
  • Menzies SA, Betz AL, Hof JT. Contribution of ions and albumin to the formation and resolution of ischemic brain edema. J Neurosurg 1993; 78: 257–266
  • Kirk J, Plumb J, Mirakhur M, McQuaids S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol 2003; 201: 319–327
  • Algotsson A, Winblad B. The integrity of the blood–brain barrier in Alzheimer's disease. Acta Neurol Scand 2007; 115: 403–408
  • Farrall AJ, Wardlaw JM. Blood–brain barrier: ageing and microvascular disease—systematic review and meta-analysis. Neurobiol Aging 2007. doi: 10.1016/j.neurobiolaging.2007.07.015.
  • Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 2003; 10: 463–470
  • Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF. Blood–brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 2007; 68: 1809–1814
  • Gonzalez-Velasquez FJ, Kotarek JA, Moss MA. Soluble aggregates of the amyloid-beta protein selectively stimulate permeability in human brain microvascular endothelial monolayers. J Neurochem 2008; 107: 466–477
  • Li G, Ma R, Huang C, Tang Q, Fu Q, Liu H, Hu B, Xiang J. Protective effect of erythropoietin on beta-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci Lett 2008; 442: 143–147
  • Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-beta1-42. J Pineal Res 2008; 45: 157–165
  • Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer's disease. J Neurochem 1997; 68: 2061–2069
  • Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J Neurochem 2005; 93: 953–962
  • Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochim Biophys Acta 2007; 1768: 1976–1990
  • Chen JX, Yan SD. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis 2007; 12: 177–184
  • Sipos I, Tretter L, Adam-Vizi V. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 2005; 84: 112–118
  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 2007; 282: 11590–11601
  • Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY. Amyloid beta peptide and NDMA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 2008; 106: 45–55
  • Marco S., Skaper SD. Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci Lett 2006; 401: 219–224
  • Leake C, Morris CM, Whateley J. Brain matrix metalloproteinase 1 levels are elevated in Alzheimer's disease. Neurosci Lett 2000; 291: 201–203
  • Lorenzl S, Albers DS, Relkin N, Ngyuen T, Hilgenberg SL, Chirichigno J, Cudkowicz ME, Beal MF. Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer's disease. Neurochem Int 2003; 43: 191–196
  • Bronner LL, Kunter DS, Mansom JE. Primary prevention of stroke. N Eng J Med 1995; 333: 1392–1400
  • Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke 1990; 21: 801–807
  • Rosenberg GA, Estrada E, Kelley RD, Kornfeld M. Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rats. Neurosci Lett 1993; 160: 117–119
  • Mori T, Nagata K, Town T, Tan J, Mathi T, Asano T. Intracisternal increase of superoxide anion production in a canine subarachnoid haemorrhage model. Stroke 2001; 32: 636–642
  • Chang CY, Lai YC, Cheng TJ, Lau MT, Hu ML. Plasma levels of antioxidant vitamins, selenium, total sulfhydryl groups and oxidative products in ischemic-stroke patients as compared to matched controls in Taiwan. Free Radic Res 1998; 28: 15–24
  • Ferretti G, Bacchetti T, Masciangelo S, Nanetti L, Mazzanti L, Silvestrini M, Bartolini M, Provinciali L. Lipid peroxidation in stroke patients. Clin Chem Lab Med 2008; 46: 113–117
  • Kelly PJ, Marrow JD, Nig M, Kovoshetz W, Lo EH, Terry E, Milne GI, Hubbard J, Lee H, Stevenson E, Lederer M, Furie KL. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke 2008; 39: 100–104
  • Rak R, Chao DL, Pluta RM, Mitchell J, Olfield EH, Watson JC. Neuroprotection by the stable nitroxide Tempol during reperfusion in a rat model of transient focal ischemia. J Neurosurg 2000; 92: 646–657
  • Rak R, Chao DL, Pluta RM, Mitchell J, Olfield EH, Watson JC. Neuroprotection by the stable nitroxide Tempol during reperfusion in a rat model of transient focal ischemia. J Neurosurg 2000; 92: 646–657
  • van der Goes A, Wouters D, van der Pol S, Huizinga R, Ronken E, Adamson P, Greenwood J, Dijksta CD, de Vries HE. Reactive oxygen species enhance the migration of monocytes across the blood–brain barrier in vitro. FASEB J 2001; 15: 1852–1854
  • Mark KS, Davis TP. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol Heart Care Physiol 2002; 282: H1485–H1494
  • van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 2008; 45: 1729–1737
  • Offen D, Gilgun-Sherki Y, Barhum Y, Benhar M, Grinberg L, Reich R, Melamed E, Atlas D. A low molecular weight copper chelator crosses the blood–brain barrier and attenuates experimental autoimmune encephalomyelitis. J Neurochem 2004; 89: 1241–1251
  • Ayer RE, Sugawara T, Chen W, Tong W, Zhang JH. Melatonin decreases mortality following severe subarachnoid hemorrhage. J Pineal Res 2008; 44: 197–204
  • Nakamura T, Kuroda Y, Yamashita S, Zhang X, Miyamoto O, Tamiya T, Nagao S, Xi G, Keep RF, Itano T. Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 2008; 39: 463–469
  • Ritz M, Ratajczak P, Curin Y, Cam E, Mendelowitsch A, Pinet F, Andriantsitohaina R. Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. J Nutr 2008; 138: 519–525
  • Diener HC, Less KR, Lyden P, Grotta J, Davalos A, Davis SM, Shuaib A, Ashwood T, Wasiewski W, Alderfer V, Hardemark H, Rodichok L. NXY-059 for the treatment of acute stroke—pooled analysis of the SAINT I and II trials. Stroke 2008; 39: 1751–1758
  • The Tirilazad International Steering Committee, Tirilazad for acute ischemic stroke. Cochrane Database of Systematic Reviews 2001;4. Art No: CD002087. doi: 10.1002/14651858.CD002087.
  • Petty MA, Poulet P, Haas A, Namer IJ, Wagner J. Reduction of traumatic brain injury-induced cerebral oedema by a free radical scavenger. Eur J Pharmacol 1996; 307: 149–155
  • Ozturk E, Demirbilek S, Kadir But A, Saricicek V, Gulec M, Akyol O, Ozcan Ersoy M. Antioxidant properties of propofol and erythropoietin after closed head injury in rats. Prog Neuro Psychopharmacol Biol Psych 2005; 29: 922–927
  • Wu A, Ying Z, Gomez-Pinilla F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity and cognition. Exp Neurol 2006; 197: 309–317
  • Martin-Aragon S, Benedi JM, Villar AM. Modifications on antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J Pharm Pharmacol 1997; 49: 49–52
  • Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke 2004; 35: 2220–2225
  • Kontos HA. Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke 2001; 32: 2712–2716
  • Hsu CY, Ahmed SH, Less KR. The therapeutic time window—theoretical and practical considerations. J Stroke Cerbrovasc Dis 2000; 9: 24–31
  • Talamagas AA, Efthimiopoulos S, Tsilibary EC, Figueiredo-Pereira ME, Tzinia AK. Abeta(1-40)-induced secretion of matrix metalloproteinase-9 results in sAPPalpha release by association with cell surface APP. Neurobiol Dis 2007; 28: 304–315
  • Walsh DM, Selkoe DJ. A beta oligomers: a decade of discovery. J Neurochem 2007; 101: 1172–1184
  • Pandi-Perumal SR, Srinivasan V, Maaestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: nature's most versatile biological signal?. FEBS J 2006; 273: 2813–2838
  • Benitez-King G. Melatonin as a cytoskeletal modulator: implications for cell physiology and disease. J Pineal Res 2006; 40: 1–9
  • Cameron AR, Anton S, Melville L, Houston NP, Dayal S, McDougall GJ, Stewart D, Rena G. Black tea polyphenols mimic insulin-insulin-like growth factor-1 signaling to the longevity factor FOXO1a. Aging Cell 2008; 7: 69–77
  • Fresco P, Borges F, Diniz C, Marques MPM. New insights on the anticancer properties of dietary polyphenols. Med Res Rev 2006; 26: 747–766
  • Kobayahi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 2006; 46: 113–140
  • Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegenration. Ann NY Acad Sci 2008; 1147: 61–69
  • Zhao J, Moore AN, Redell JB, Dash PK. Enhancing expression of Nrf2-driven genes protects the blood-brain barrier after brain injury. J Neurosci 2007; 27: 10240–10248
  • de Vries HE, Witte M, Hondius D, Rozemuller AJM, Drukarch B, Hoozermans J, van Horssen J. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenrative disease?. Free Radic Biol Med 2008; 45: 1375–1383
  • Golden TR, Patel M. Catalytic antioxidants and neurodegeneration. Antioxid Redox Signal 2008. doi: 10.1089/ars.2008.2256.
  • Hague T, Andrews PL, Barker J, Naughton DP. Dietary chelators as antioxidant enzyme mimetics: implications for dietary intervention in neurodegenerative diseases. Behav Pharmacol 2006; 17: 425–430
  • Sagara Y, Hendler S, Khoh-Reiter S, Gillenwater G, Carlo D, Schubert D, Chang J. Propofol hemisuccinate protects neuronal cells from oxidative injury. J Neurochem 1999; 73: 2524–2530
  • Price TO, Uras F, Banks WA, Ercal N. A novel antioxidant N-acetylcysteine-amide prevents gp120- and Tat- induced oxidative stress in brain endothelial cells. Exp Neurol 2006; 201: 193–202
  • ClinicalTrials.gov Database [Internet]. National Institutes of Health, Department of Health and Human Services (US). Available online at: http://clinicaltrials.gov/ct2/home, accessed 20 June 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.