190
Views
27
CrossRef citations to date
0
Altmetric
Original

Electron transfer: A primary step in the reactions of sodium hydrosulphide, an H2S/HS donor

, , , &
Pages 581-593 | Received 05 Mar 2009, Published online: 21 Jul 2009

References

  • Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous H2S channel opener. EMBO J 2001; 20: 6008–6016
  • Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C. H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 2004; 313: 362–368
  • Johansen D, Ytrehus K, Baxter G. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury—evidence for a role of KATP channels. Basic Res Cardiol 2006; 101: 53–60
  • Sivarajah A, McDonald M, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 2006; 26: 154–161
  • Chen C, Xin H, Zhu Y. Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 2007; 28: 1709–1716
  • Lowicka E, Beltowski J. Hydrogen sulfide (H2S)—the third gas for interest for pharmacologists. Pharm Rep 2007; 59: 4–24
  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa A, Mu W, Zhang S, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008; 322: 587–590
  • Ondrias K, Stasko A, Cacanyiova S, Sulova Z, Krizanova O, Kristek F, Malekova L, Knezl V, Breier A. H2S and HS− donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells. Pflugers Arch 2008; 457: 271–279
  • Wang R. The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 2003; 5: 493–501
  • Ali M, Ping C, Mok Y, Ling L, Whiteman M, Bhatia M, Moore PK. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide?. Br J Pharmacol 2006; 149: 625–634
  • Whiteman M, Li L, Kostetski I, Chu S, Siau J, Bhatia M, Moore PK. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 2006; 343: 303–310
  • Whiteman M, Ali M, Li L, Cheong Y, Mok Y, Kostetski L, Chu SH, Siau JL, Bhatia M, Moore PK. Hydrogen sulfide regulates the availability of nitric oxide through the formation of a novel nitrosothiol: implications for cardiovascular function and human disease. Nitric Oxide-Biol Chem 2006; 14: A40
  • Fukuto J, Collins M. Interactive endogenous small molecule (gaseous) signaling: implications for teratogenesis. Curr Pharm Des 2007; 13: 2952–2978
  • Muzaffar S, Shukla N, Bond M, Newby AC, Angelini GD, Sparatore A, Soldato PD, Jeremy JY. Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac 1 activity in human vascular smooth muscle cells. J Vasc Res 2008; 45: 521–528
  • Kwak W, Kwon G, Jin I, Kuriyama H, Sohn H. Involvement of oxidative stress in the regulation of H2S production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEMS Microbiol Lett 2003; 219: 99–104
  • Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J 2004; 18: 1165–1167
  • Hoffmann MR. Kinetics and mechanism of oxidation of hydrogen sulfide by hydrogen peroxide in acidic solution. Environ Sci Technol 1977; 11: 61–66
  • Cadena F, Peters R. Evaluation of chemical oxidizers for hydrogen sulfide control. J Water Poll Control Fed 1988; 60: 1259–1263
  • Yonezawa D, Sekiguchi F, Miyamotoa M, Taniguchi E, Honjo M, Masuko T, Nishikawa H, Kawabata A. A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium. Toxicology 2007; 241: 11–18
  • Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 2008; 34: 573–585
  • Lu M, Hu L, Hu G, Bian J. Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 2008; 45: 1705–1713
  • Devai I, Delaune R. Effectiveness of selected chemicals for controlling emission of malodorous sulfur gases in sewage sludge. Environ Technol 2002; 23: 319–329
  • Bartberger M, Olson L, Houk K. Mechanisms of peroxynitrite oxidations and rearrangements: the theoretical perspective. Chem Res Toxicol 1998; 11: 710–711
  • Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong B-S, Cheung NS, Halliwell B, Moore PK. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’?. J Neurochem 2004; 90: 765–768
  • Dahm C, Moore K, Murphy M. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite—implications for the interaction of nitric oxide with mitochondria. J Biol Chem 2006; 281: 10056–10065
  • Lobachev V, Rudakov E. The chemistry of peroxynitrite. Reaction mechanisms and kinetics. Uspekhi Khimii 2006; 75: 422–444
  • Whiteman M, Cheung N, Zhu Y, Chu S, Siau J, Wong B, Armstrong JS, Moore PK. Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain?. Biochem Biophys Res Commun 2005; 326: 794–798
  • Laggner H, Muellner M, Schreier S, Sturm B, Hermann M, Exner M, Gmeiner BM, Kapiotis S. Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic Res 2007; 41: 741–747
  • Chen KY, Morris JC. Oxidation of sulfide by O2. Catalysis and inhibition. ASCE J Sanit Eng Div 1972; 98: 215–227
  • Tapley D, Buettner G, Shick J. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol Bull 1999; 196: 52–56
  • Dombkowski R, Russell M, Olson K. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 2004; 286: R678–R685
  • Lide DR. CRC handbook of chemistry and physics.: CRC Press; 2005.
  • Medvedeva ML, Gorelik AA. Dangers from improper use of aluminum tank cars. Chem Pet Eng 2007; 43: 695–698
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26: 1231–1237
  • Staško A, Brezová V, Biskupič S, Mišík V. The potential pitfalls of using 1,1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents. Free Radic Res 2007; 41: 379–390
  • Duling DR. Simulation of multiple isotropic spin-trap EPR-spectra. J Magn Reson B 1994; 104: 105–110
  • Hautala RR, Schore NE, Turro NJ. A novel fluorescent probe. Use of time-correlated fluorescence to explore the properties of micelle-forming detergent. J Am Chem Soc 1973; 95: 5508–5514
  • Bilski P, Chignell CF, Szychlinski J, Borkowski A, Oleksy E, Reszka K. Photooxidation of organic and inorganic substrates during UV photolysis of nitrite anion in aqueous solution. J Am Chem Soc 1992; 114: 549–556
  • Huvaere K, Andersen M, Storme M, Van Bocxlaer J, Skibsted L, De Keukeleire D. Flavin-induced photodecomposition of sulfur-containing amino acids is decisive in the formation of beer lightstruck flavor. Photochem Photobiol Sci 2006; 5: 961–969
  • Lykakis I, Ferreri C, Chatgilialoglu C. The sulfhydryl radical (HS•/S• −): a contender for the isomerization of double bonds in membrane lipids. Angew Chem Int Ed 2007; 46: 1914–1916
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford University Press, Oxford 1999
  • Makarov S, Mundoma C, Svarovsky S, Shi X, Gannett P, Simoyi R. Reactive oxygen species in the aerobic decomposition of sodium hydroxymethanesulfinate. Arch Biochem Biophys 1999; 367: 289–296
  • Rehorek D, Dubose C, Janzen E. On the spin trapping of sulfur-dioxide anion-radicals (SO2• −) by nitrones. J Prakt Chem 1991; 333: 321–325
  • Covello PS, Thompson JE. Spin trapping evidence for formation of the sulfite radical anion during chloroplast-mediated oxidation of bisulfite ion. BBA General Subjects 1985; 843: 150–154
  • Chen C, Ren X, Lu D, Zhang Y. Study of photoreaction in aqueous dispersions of zinc-oxide containing inorganic salts. Chin Sci Bull 1991; 36: 1081–1085
  • Brezová V, Staško A, Biskupič S. Radical intermediates in the photochemical decomposition of p-toluenesulphonate (a kinetic spin-trapping study). J Photochem Photobiol A 1993; 71: 229–235
  • Jiang J, Liu KJ, Shi X, Swartz HM. Detection of short-lived free radicals by low-frequency electron paramagnetic resonance spin trapping in whole living animals. Arch Biochem Biophys 1995; 319: 570–573
  • Reed GA, Curtis JF, Mottley C. Epoxidation of (±)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene during (bi)sulfite autoxidation: activation of a procarcinogen by a cocarcinogen. Proc Natl Acad Sci USA 1986; 83: 7499–7502
  • Mottley C, Connor H, Mason R. [17O]oxygen hyperfine-structure for the hydroxyl and superoxide radical adducts of the spin traps DMPO, PBN and 4-POBN. Biochem Biophys Res Commun 1986; 141: 622–628
  • Moreno R, Alipazaga M, Gomes O, Linares E, Medeiros M, Coichev N. DNA damage and 2′-deoxyguanosine oxidation induced by S(IV) autoxidation catalyzed by copper(II) tetraglycine complexes: synergistic effect of a second metal ion. J Inorg Biochem 2007; 101: 866–875
  • Ilan Y, Rabani J. On some fundamental reactions in radiation chemistry: nanosecond pulse radiolysis. Int J Radiat Phys Chem 1976; 8: 609–611
  • Bielski B, Cabelli D, Arudi R, Ross A. Reactivity of HO2/O2− radicals in aqueous-solution. J Phys Chem Ref Data 1985; 14: 1041–1100
  • Weinstein J, Bielski BHJ. Kinetics of the interaction of HO2 and O2− radicals with hydrogen peroxide. The Haber-Weiss reaction. J Am Chem Soc 1979; 101: 58–62
  • Das T, Huie R, Neta P, Padmaja S. Reduction potential of the sulfhydryl radical: pulse radiolysis and laser flash photolysis studies of the formation and reactions of •SH and HSSH• − in aqueous solutions. J Phys Chem A 1999; 103: 5221–5226
  • Mills G, Schmidt KH, Matheson MS, Meisel D. Thermal and photochemical reactions of sulfhydryl radicals. Implications for colloid photocorrosion. J Phys Chem 1987; 91: 1590–1596
  • Creutz C, Sutin N. Kinetics of the reactions of sodium dithionite with dioxygen and hydrogen peroxide. Inorg Chem 1974; 13: 2041–2043
  • Report OECD SIDS . Sodium dithionite 7775-14-6. 2004. Available online at: http://www.inchem.org/documents/sids/sids/7775146.pdf,
  • Huie RE, Neta P. Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmos Environ (1967) 1987; 21: 1743–1747
  • Huie RE, Neta P. Chemical behavior of SO3− and SO5− radicals in aqueous solutions. J Phys Chem 1984; 88: 5665–5669
  • Huie RE, Clifton CL, Altstein N. A pulse radiolysis and flash photolysis study of the radicals SO2−, SO3−, SO4− and SO5−. Radiat Phys Chem 1989; 33: 361–370
  • Yermakov AN, Zhitomirsky BM, Poskrebyshev GA, Stoliarov SI. Kinetic study of SO5− and HO2 radicals reactivity in aqueous phase bisulfite oxidation. J Phys Chem 1995; 99: 3120–3127
  • Goldstein S, Samuni A, Merenyi G. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols. J Phys Chem A 2008; 112: 8600–8605
  • Dabestani R, Hall R, Sik R, Chignell C. Spectroscopic studies of cutaneous photosensitizing agents—XV. Anthralin and its oxidation-product 1,8-dihydroxyanthraquinone. Photochem Photobiol 1990; 52: 961–971
  • Harbour JR, Hair ML. Detection of superoxide ions in nonaqueous media. Generation by photolysis of pigment dispersions. J Phys Chem 1978; 82: 1397–1399
  • Brezová V, Gabčová S, Dvoranová D, Staško A. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). J Photochem Photobiol B 2005; 79: 121–134
  • Noda H, Oikawa K, Ohya-Nishiguchi H, Kamada H. Detection of superoxide ions from photoexcited semiconductors in non-aqueous solvents using the ESR spin-trapping technique. Bull Chem Soc Jpn 1993; 66: 3542–3547
  • Pieta P, Petr A, Kutner W, Dunsch L. In situ ESR spectroscopic evidence of the spin-trapped superoxide radical, O2• −, electrochemically generated in dmso at room temperature. Electrochim Acta 2008; 53: 3412–3415
  • Lunenok-Burmakina VA, Gerasenkova AN. Mechanism of the oxidation of inorganic sulphur compounds by hydrogen peroxide. Russ J Inorg Chem 1964; 9: 149–152
  • Qiao X, Chen S, Tan L, Zheng H, Ding Y, Ping Z. Investigation of formation of superoxide anion radical in DMSO by ESR: Part 1. Influence of Fe2 + and Cu2 +. Magn Reson Chem 2001; 39: 207–211
  • Vasiltsov AM, Trofimov BA, Amosova SV, Voronov VK. Divinyl sulfide. Communication 9. Kinetics and mechanism of reaction of phenylacetylene with sodium hydrosulfide in aqueous dimethyl sulfoxide. Russ Chem Bull 1982; 31: 2155–2160
  • Dalal N, Shi X. On the formation of oxygenated radicals by fredericamycin A and implications to its anticancer activity: An ESR investigation. Biochemistry 1989; 28: 748–750
  • Bors W, Stettmaier K. Determination of rate constants of the spin trap 3,5-dibromo-4 nitrosobenzenesulfonic acid with various radicals by pulse radiolysis and competition kinetics. J Chem Soc Perkin Trans 1992; 2: 1509–1512
  • Stolze K, Mason RP. Spin trapping artifacts in DMSO. Biochem Biophys Res Commun 1987; 143: 941–946
  • Davies C, Nielsen B, Timmins G, Hamilton L, Brooker A, Guo R, Symons M, Winyard P. Characterization of the radical product formed from the reaction of nitric oxide with the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate. Nitric Oxide 2001; 5: 116–127
  • Guo R, Davies C, Nielsen B, Hamilton L, Symons M, Winyard P. Reaction of the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate with human biofluids. Biochim Biophys Acta Gen Subj 2002; 1572: 133–142
  • Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tanga C. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 2004; 318: 756–763
  • Fu Z, Liu X, Geng B, Fang L, Tang C. Hydrogen sulfide protects rat lung from ischemia–reperfusion injury. Life Sci 2008; 82: 1196–1202
  • Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol 2008; 295: H801–H806
  • Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Biophys Res Commun 2006; 351: 485–491
  • Tyagi N, Moshal KS, Sen U, Vacek TP, Kumar M, Hughes WM, Jr, Kundu S, Tyagi SC. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 2009; 11: 25–33
  • Jeney V, Komódi E, Nagy E, Zarjou A, Vercellotti GM, Eaton JW, Balla G, Balla J. Supression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H2S). Free Radic Biol Med 2009; 46: 616–623
  • Shi YX, Chen Y, Zhu YZ, Huang GY, Moore PK, Huang SH, Yao T, Zhu YC. Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2007; 293: H2093–H2100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.