500
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Inhibition of phagocytic activity of ARPE-19 cells by free radical mediated oxidative stress

, , &
Pages 887-897 | Received 26 Feb 2016, Accepted 22 May 2016, Published online: 07 Jul 2016

References

  • Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000; 45:115–134.
  • Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP. Oxidative damage and protection of the RPE. Prog Retin Eye Res 2000;19:205–221.
  • Mullen RJ, La Vail MM. Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. Science 1976;192:799–801.
  • Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D. Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol B 1993;19:201–204.
  • Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR. The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 2012;31:28–42.
  • Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 1995;270:18825–18830.
  • Sarna T, Rozanowska M. Phototoxicity of the eye. In: Jori G, Pottier RH, Rodgers MAJ, Truscott TG, eds. Photobiology in medicine. New York: Plenum Press; 1994:125–141.
  • Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol 2006;51:461–481.
  • Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 2012;33:399–417.
  • Miceli MV, Liles MR, Newsome DA. Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res 1994;214:242–249.
  • Tate DJ Jr, Miceli MV, Newsome DA. Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1995;36:1271–1279.
  • Korytowski W, Pilas B, Sarna T, Kalyanaraman B. Photoinduced generation of hydrogen peroxide and hydroxyl radicals in melanins. Photochem Photobiol 1987;45:185–190.
  • Sarna T, Burke JM, Korytowski W, Rozanowska M, Skumatz CM, Zareba A, et al. Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 2003;76:89–98.
  • Olchawa M, Szewczyk G, Zareba M, Pilat A, Bzowska M, Mikolajczyk T, et al. Sub-lethal photodynamic damage to ARPE-19 cells transiently inhibits their phagocytic activity. Photochem Photobiol 2010;86:772–780.
  • Olchawa MM, Herrnreiter AM, Skumatz CM, Zareba M, Sarna TJ, Burke JM. Photosensitized oxidative stress to ARPE-19 cells decreases protein receptors that mediate photoreceptor outer segment phagocytosis. Invest Ophthalmol Vis Sci 2013;54:2276–2287.
  • Croce AC, Wyroba E, Bottiroli G. Distribution and retention of rose Bengal and disulphonated aluminium phthalocyanine: a comparative study in unicellular eukaryote. J Photochem Photobiol 1992;16:319–330.
  • Easton TG, Valinsky JE, Reich E. Merocyanine 540 as a fluorescent probe of membranes: staining of electrically excitable cells. Cell 1978;13:475–486.
  • Kochevar IE, Bouvier J, Lynch M, Lin CW. Influence of dye and protein location on photosensitization of the plasma membrane. Biochim Biophys Acta 1994;1196:172–180.
  • Sieber F. Merocyanine 540. Photochem Photobiol 1987;46:1035–1042.
  • Sieber F. Elimination of residual tumor cells from autologous bone marrow grafts by dye-mediated photolysis: preclinical data. Photochem Photobiol 1987;46:71–76.
  • Kalyanaraman B, Feix JB, Sieber F, Thomas JP, Girotti AW. Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc Natl Acad Sci USA 1987;84:2999–3003.
  • Neckers DC, Valdes-Aguilera OM. Photochemistry of the xanthene dyes. Adv Photochem 1993;18:315–394.
  • Kaczara P, Sarna T, Burke JM. Dynamics of H2O2 availability to ARPE-19 cultures in models of oxidative stress. Free Radic Biol Med 2010;48:1064–1070.
  • Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochim Biophys Acta 2006;1758:994–1003.
  • Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett 2000;486:10–13.
  • Winterbourn CC. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem J 1981;198:125–131.
  • Sarna T, Zajac J, Bowman MK, Truscott TG. Photoinduced electron transfer reactions of rose Bengal and selected electron donors. J Photochem Photobiol A: Chem 1991;60:295–310.
  • Lambert C, Sarna T, Truscott TG. Rose Bengal radicals and their reactivity. J Chem Soc Faraday Trans 1990;86:3879–3882.
  • Rozanowska M, Ciszewska J, Korytowski W, Sarna T. Rose-Bengal-photosensitized formation of hydrogen peroxide and hydroxyl radicals. J Photochem Photobiol B: Biol 1995;29:71–77.
  • Burke JM, Kaczara P, Skumatz CMB, Zareba M, Raciti MW, Sarna T. Dynamic analyses reveal cytoprotection by RPE melanosomes against non-photic stress. Mol Vis 2011;17:2864–2877.
  • Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 1989;119:203–210.
  • Zareba M, Raciti MW, Henry MM, Sarna T, Burke JM. Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic Biol Med 2006;40:87–100.
  • Papermaster DS. Preparation of retinal rod outer segments. Meth Enzymol 1982;81:48–52.
  • Kennedy CJ, Rakoczy PE, Constable IJ. A simple flow cytometric technique to quantify rod outer segment phagocytosis in cultured retinal pigment epithelial cells. Curr Eye Res 1996;15:998–1003.
  • McLaren MJ, Inana G, Li CY. Double fluorescent vital assay of phagocytosis by cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1993;34:317–326.
  • Korytowski W, Bachowski GJ, Girotti AW. Chromatographic separation and electrochemical determination of cholesterol hydroperoxides generated by photodynamic action. Anal Biochem 1991;197:149–156.
  • Korytowski W, Geiger PG, Girotti AW. High-performance liquid chromatography with mercury cathode electrochemical detection: application to lipid hydroperoxide analysis. J Chromatogr B: Biomed Appl 1995;670:189–197.
  • Korytowski W, Geiger PG, Girotti AW. Lipid hydroperoxide analysis by high-performance liquid chromatography with mercury cathode electrochemical detection. Methods Enzymol 1999;300:23–33.
  • Korytowski W, Girotti AW. Singlet oxygen adducts of cholesterol: photogeneration and reductive turnover in membrane systems. Photochem Photobiol 1999;70:484–489.
  • Lee PC, Rodgers MA. Laser flash photokinetic studies of rose Bengal sensitized photodynamic interactions of nucleotides and DNA. Photochem Photobiol 1987;45:79–86.
  • Olchawa MM, Herrnreiter AM, Pilat AK, Skumatz CM, Niziolek-Kierecka M, Burke JM, et al. Zeaxanthin and alpha-tocopherol reduce the inhibitory effects of photodynamic stress on phagocytosis by ARPE-19 cells. Free Radic Biol Med 2015;89:873–882.
  • D'Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000;9:645–651.
  • Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc Natl Acad Sci USA 1997;94:12932–12937.
  • Lin H, Clegg DO. Integrin alphavbeta5 participates in the binding of photoreceptor rod outer segments during phagocytosis by cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1998;39:1703–1712.
  • Miceli MV, Newsome DA, Tate DJ Jr. Vitronectin is responsible for serum-stimulated uptake of rod outer segments by cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1997;38:1588–1597.
  • Nandrot EF, Kim Y, Brodie SE, Huang X, Sheppard D, Finnemann SC. Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking alphavbeta5 integrin. J Exp Med 2004;200:1539–1545.
  • Kochevar IE, Lambert CR, Lynch MC, Tedesco AC. Comparison of photosensitized plasma membrane damage caused by singlet oxygen and free radicals. Biochim Biophys Acta 1996;1280:223–230.
  • Kochevar IE, Lynch MC, Zhuang S, Lambert CR. Singlet oxygen, but not oxidizing radicals, induces apoptosis in HL-60 cells. Photochem Photobiol 2000;72:548–553.
  • Lambert CR, Kochevar IE. Does rose Bengal triplet generate superoxide anion? J Am Chem Soc 1996;118:3297–3298.
  • Kozinska A, Oles T, Sarna T. Photoactivation and detection of photoexcited molecules and photochemical products. Israel J Chem 2012;52:745–756.
  • Baker A, Kanofsky JR. Time-resolved studies of singlet-oxygen emission from L1210 leukemia cells labeled with 5-(N-hexadecanoyl)amino eosin. A comparison with a one-dimensional model of singlet-oxygen diffusion and quenching. Photochem Photobiol 1993;57:720–727.
  • Kanofsky JR. Quenching of singlet oxygen by human red cell ghosts. Photochem Photobiol 1991;53:93–99.
  • Qin S, Rodrigues GA. Roles of αvβ5, FAK and MerTK in oxidative stress inhibition of RPE cell phagocytosis. Exp Eye Res 2012;94:63–70.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 1999.
  • Dunaief JL. Iron induced oxidative damage as a potential factor in age-related macular degeneration: the Cogan Lecture. Invest Ophthalmol Vis Sci 2006;47:4660–4664.
  • Antunes F, Cadenas E. Estimation of H2O2 gradients across biomembranes. FEBS Lett 2000;475:121–126.
  • Makino N, Sasaki K, Hashida K, Sakakura Y. A metabolic model describing the H2O2 elimination by mammalian cells including H2O2 permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data. Biochim Biophys Acta 2004;1673:149–159.
  • Makino N, Mise T, Sagara J. Kinetics of hydrogen peroxide elimination by astrocytes and C6 glioma cells analysis based on a mathematical model. Biochim Biophys Acta 2008;1780:927–936.
  • Pilat A, Herrnreiter AM, Skumatz CM, Sarna T, Burke JM. Oxidative stress increases HO-1 expression in ARPE-19 cells, but melanosomes suppress the increase when light is the stressor. Invest Ophthalmol Vis Sci 2013;54:47–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.