324
Views
13
CrossRef citations to date
0
Altmetric
Original Article

The enhancement of oxidative DNA damage by anti-diabetic metformin, buformin, and phenformin, via nitrogen-centered radicals

, &
Pages 929-937 | Received 14 Mar 2016, Accepted 19 Jun 2016, Published online: 15 Jul 2016

References

  • Ferrannini E. The target of metformin in type 2 diabetes. N Engl J Med 2014;371:1547–1548.
  • Bailey CJ, Turner RC. Metformin. N Engl J Med 1996;334:574–579.
  • Kasuga M, Ueki K, Tajima N, Noda M, Ohashi K, Noto H, et al. Report of the Japan diabetes society/Japanese cancer association joint committee on diabetes and cancer. Cancer Sci 2013;104:965–976.
  • Anisimov VN. Do metformin a real anticarcinogen? A critical reappraisal of experimental data. Ann Transl Med 2014;2:60.
  • Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung YS, Choi JY. Synergistic anti-cancer effect of phenformin and oxamate. PLoS One 2014;9:e85576.
  • Bao B, Wang Z, Li Y, Kong D, Ali S, Banerjee S, et al. The complexities of obesity and diabetes with the development and progression of pancreatic cancer. Biochim Biophys Acta 2011;1815:135–146.
  • Gonzalez-Angulo AM, Meric-Bernstam F. Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res 2010;16:1695–1700.
  • Pernicova I, Korbonits M. Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014;10:143–156.
  • Choi YK, Park KG. Metabolic roles of AMPK and metformin in cancer cells. Mol Cells 2013;36:279–287.
  • Hur KY, Lee MS. New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig 2015;6:600–609.
  • Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M, Kawanishi S. DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid Med Cell Longev 2013;2013:387014.
  • Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res 2001;488:65–76.
  • Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991;349:431–434.
  • Loeb LA, Preston BD. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet 1986;20:201–230.
  • Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T. Oxidative damage to DNA in diabetes mellitus. Lancet 1996;347:444–445.
  • Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 2004;339:1–9.
  • Kakimoto M, Inoguchi T, Sonta T, Yu HY, Imamura M, Etoh T, et al. Accumulation of 8-hydroxy-2'-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes 2002;51:1588–1595.
  • Murata M, Mizutani M, Oikawa S, Hiraku Y, Kawanishi S. Oxidative DNA damage by hyperglycemia-related aldehydes and its marked enhancement by hydrogen peroxide. FEBS Lett 2003;554:138–142.
  • Sova H, Puistola U, Morin-Papunen L, Karihtala P. Metformin decreases serum 8-hydroxy-2'-deoxyguanosine levels in polycystic ovary syndrome. Fertil Steril 2013;99:593–598.
  • Kim J, Shon E, Kim CS, Kim JS. Renal podocyte injury in a rat model of type 2 diabetes is prevented by metformin. Exp Diabetes Res 2012;2012:210821.
  • Maayah ZH, Ghebeh H, Alhaider AA, El-Kadi AO, Soshilov AA, Denison MS, et al. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway. Toxicol Appl Pharmacol 2015;284:217–226.
  • Ece H, Cigdem E, Yuksel K, Ahmet D, Hakan E, Oktay TM. Use of oral antidiabetic drugs (metformin and pioglitazone) in diabetic patients with breast cancer: how does it effect serum Hif-1 alpha and 8Ohdg levels? Asian Pac J Cancer Prev 2012;13:5143–5148.
  • Murata M, Moriya K, Inoue S, Kawanishi S. Oxidative damage to cellular and isolated DNA by metabolites of a fungicide ortho-phenylphenol. Carcinogenesis 1999;20:851–857.
  • Buettner GR. Spin trapping: ESR parameters of spin adducts. Free Radic Biol Med 1987;3:259–303.
  • Yamamoto K, Kawanishi S. Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper (II) ion and hydrogen peroxide. J Biol Chem 1989;264:15435–15440.
  • Yamamoto K, Kawanishi S. Site-specific DNA damage induced by hydrazine in the presence of manganese and copper ions. The role of hydroxyl radical and hydrogen atom. J Biol Chem 1991;266:1509–1515.
  • Pryor WA, Tang RH. Ethylene formation from methional. Biochem Biophys Res Commun 1978;81:498–503.
  • Gutteridge JM, Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta 1983;759:38–41.
  • Rowley DA, Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction? Arch Biochem Biophys 1983;225:279–284.
  • Simpson JA, Cheeseman KH, Smith SE, Dean RT. Free-radical generation by copper ions and hydrogen peroxide. Stimulation by Hepes buffer. Biochem J 1988;254:519–523.
  • Logie L, Harthill J, Patel K, Bacon S, Hamilton DL, Macrae K, et al. Cellular responses to the metal-binding properties of metformin. Diabetes 2012;61:1423–1433.
  • Jeng W, Ramkissoon A, Parman T, Wells PG. Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration. FASEB J 2006;20:638–650.
  • Hirakawa K, Midorikawa K, Oikawa S, Kawanishi S. Carcinogenic semicarbazide induces sequence-specific DNA damage through the generation of reactive oxygen species and the derived organic radicals. Mutat Res 2003;536:91–101.
  • Murata M, Ohnishi S, Kawanishi S. Acrylonitrile enhances H2O2-mediated DNA damage via nitrogen-centered radical formation. Chem Res Toxicol 2001;14:1421–1427.
  • Midorikawa K, Murata M, Oikawa S, Tada-Oikawa S, Kawanishi S. DNA damage by dimethylformamide: role of hydrogen peroxide generated during degradation. Chem Res Toxicol 2000;13:309–315.
  • Yamamoto K, Kawanishi S. Free radical production and site-specific DNA damage induced by hydralazine in the presence of metal ions or peroxidase/hydrogen peroxide. Biochem Pharmacol 1991;41:905–914.
  • Pryor WA. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 1986;48:657–667.
  • Rao PS, Hayon E. Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water. J Phys Chem 1975;79:1063–1066.
  • Theophanides T, Anastassopoulou J. Copper and carcinogenesis. Crit Rev Oncol Hematol 2002;42:57–64.
  • Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 2000;28:1387–1404.
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82:291–295.
  • Yoshie Y, Ohshima H. Synergistic induction of DNA strand breakage by cigarette tar and nitric oxide. Carcinogenesis 1997;18:1359–1363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.