536
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Biotransformation: a green and efficient way of antioxidant synthesis

, &
Pages 939-948 | Received 15 Jan 2016, Accepted 03 Jul 2016, Published online: 27 Jul 2016

References

  • Borges KB, Borges WDS, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG. Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry 2009;20:385–397.
  • Gorski JC, Hall SD, Jones DR, VandenBranden M, Wrighton SA. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994;47:1643–1653.
  • Sariaslani FS, Rosazza JPN. Biocatalysis in natural products chemistry. Enzyme Microb Technol 1984;6:242–253.
  • Choudhary MI, Zafar S, Khan NT, Ahmad S, Noreen S, Marasini BP, et al. Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. J Enzyme Inhib Med Chem 2012;27:348–355.
  • Zafar S, Bibi M, Yousuf S, Choudhary MI. New metabolites from fungal biotransformation of an oral contraceptive agent: methyloestrenolone. Steroids 2013;78:418–425.
  • Rathbone DA, Bruce NC. Microbial transformation of alkaloids. Curr Opin Microbiol 2002;5:274–281.
  • Zafar S, Yousuf S, Kayani HA, Saifullah S, Khan S, Al-Majid AM, Choudhary MI. Biotransformation of oral contraceptive ethynodiol diacetate with microbial and plant cell cultures. Chem Cent J 2012;6:1–8.
  • Rao SR, Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 2002;20:101–153.
  • Suga T, Hirata T. Biotransformation of exogenous substrates by plant cell cultures. Phytochemistry 1990;29:2393–2406.
  • Faber K. Biotransformations in organic chemistry: a textbook. Berlin, Germany: Springer; 2011.
  • Dai J, Guo H, Lu D, Zhu W, Zhang D, Zheng J, Guo D. Biotransformation of 2α, 5α, 10β, 14β-tetra-acetoxy-4 (20), 11-taxadiene by Ginkgo cell suspension cultures. Tetrahedron Lett 2001;42:4677–4679.
  • Junior MRM, Pastore GM. Limonene and its oxyfunctionalized compounds: biotransformation by microorganisms and their role as functional bioactive compounds. Food Sci Biotechnol 2009;18:833–841.
  • Garcı´a-Junceda E, Garcı´a-Garcı´a JF, Bastida A, Fernández-Mayoralas A. Enzymes in the synthesis of bioactive compounds: the prodigious decades. Bioorg Med Chem 2004;12:1817–1834.
  • Johnson CR. Biotransformations in the synthesis of enantiopure bioactive molecules. Acc Chem Res 1998;31:333–341.
  • Zafar S, Choudhary MI, Dalvandi K, Mahmood U, Ul-Haq Z. Molecular docking simulation studies on potent butyrylcholinesterase inhibitors obtained from microbial transformation of dihydrotestosterone. Chem Cent J 2013;7:164–175.
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82:291–295.
  • Raziq N, Saeed M, Ali MS, Zafar S, Ali MI. In vitro anti-oxidant potential of new metabolites from Hypericum oblongifolium (Guttiferae). Nat Prod Res 2015;29:2265–2270.
  • Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 2006;99:191–203.
  • Stafford HA. The metabolism of aromatic compounds. Annu Rev Plant Physiol 1974;25:459–486.
  • Koukol J, Conn EE. The metabolism of aromatic compounds in higher plants IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 1961;236:2692–2698.
  • Herrmann KM. The Shikimate Pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 1995;7:907–919.
  • Kosuge T, Conn EE. The metabolism of aromatic compounds in higher plants I. coumarin and o-coumaric acid. J Biol Chem 1959;234:2133–2137.
  • Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 2009;70:1739–1745.
  • Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU. Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 1999;202:91–100.
  • Baderschneider B, Winterhalter P. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J Agric Food Chem 2001;49:2788–2798.
  • Chiu PY, Mak DH, Poon MK, Ko KM. In vivo antioxidant action of a lignan-enriched extract of Schisandra fruit and an anthraquinone-containing extract of polygonum root in comparison with schisandrin B and emodin. Planta Med 2002;68:951–956.
  • Choi YW, Takamatsu S, Khan SI, Srinivas PV, Ferreira D, Zhao J, Khan IA. Schisandrene, a dibenzocyclooctadiene lignan from Schisandra chinensis: structure-antioxidant activity relationships of dibenzocyclooctadiene lignans. J Nat Prod 2006;69:356–359.
  • Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H. Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol 2000;1:107–112.
  • Niemeyer HB, Metzler M. Differences in the antioxidant activity of plant and mammalian lignans. J Food Eng 2003;56:255–256.
  • Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 2000;36:1235–1247.
  • Fauré M, Lissi E, Torres R, Videla LA. Antioxidant activities of lignans and flavonoids. Phytochemistry 1990;29:3773–3775.
  • Eklund PC, Långvik OK, Wärnå JP, Salmi TO, Willför SM, Sjöholm RE. Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org Biomol Chem 2005;3:3336–3347.
  • Harper A, Kerr DJ, Gescher A, Chipman JK. Antioxidant effects of isoflavonoids and lignans, and protection against DNA oxidation. Free Radic Res 1999;31:149–160.
  • Kangas L, Saarinen N, Mutanen M, Ahotupa M, Hirsinummi R, Unkila M, et al. Antioxidant and antitumor effects of hydroxymatairesinol (HM-3000, HMR), a lignan isolated from the knots of spruce. Eur J Cancer Prev 2002;11:S48–S57.
  • Chin YW, Chai HB, Keller WJ, Kinghorn AD. Lignans and other constituents of the fruits of Euterpe oleracea (Acai) with antioxidant and cytoprotective activities. J Agric Food Chem 2008;56:7759–7764.
  • Fukuda Y, Nagata M, Osawa T, Namiki M. Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. J Am Oil Chem Soc 1986;63:1027–1031.
  • Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem Toxicol 2000;38:647–659.
  • Min BS, Na MK, Oh SR, Ahn KS, Jeong GS, Li G, et al. New furofuran and butyrolactone lignans with antioxidant activity from the stem bark of Styrax japonica. J Nat Prod 2004;67:1980–1984.
  • Lee WS, Baek YI, Kim JR, Cho KH, Sok DE, Jeong TS. Antioxidant activities of a new lignan and a neolignan from Saururus chinensis. Bioorg Med Chem Lett 2004;14:5623–5628.
  • Shyu YS, Hwang LS. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res Int 2002;35:357–365.
  • Suja KP, Jayalekshmy A, Arumughan C. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH(*) system. J Agric Food Chem 2004;52:912–915.
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996;20:933–956.
  • Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 1997;22:749–760.
  • Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 1995;22:375–383.
  • Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63:1035–1042.
  • Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 2001;49:2774–2779.
  • van Acker SA, van den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJ, Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 1996;20:331–342.
  • Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG. Flavonoids as antioxidants. J Am Chem Soc 1994;116:4846–4851.
  • Cotelle N, Bernier JL, Catteau JP, Pommery J, Wallet JC, Gaydou EM. Antioxidant properties of hydroxy-flavones. Free Radic Biol Med 1996;20:35–43.
  • Torel J, Cillard J, Cillard P. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 1986;25:383–385.
  • Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 1995;19:481–486.
  • Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1999;1472:643–650.
  • Arora A, Nair MG, Strasburg GM. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med 1998;24:1355–1363.
  • Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011;82:513–523.
  • Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 2012;196:67–76.
  • Gülçin İ. Antioxidant activity of food constituents: an overview. Arch Toxicol 2012;86:345–391.
  • Masuoka N, Matsuda M, Kubo I. Characterisation of the antioxidant activity of flavonoids. Food Chem 2012;131:541–545.
  • Liu J, Wang C, Wang Z, Zhang C, Lu S, Liu J. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem 2011;126:261–269.
  • Sun L, Zhang J, Lu X, Zhang L, Zhang Y. Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem Toxicol 2011;49:2689–2696.
  • Hossain MA, Rahman SMM. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int 2011;44:672–676.
  • Kang J, Xie C, Li Z, Nagarajan S, Schauss AG, Wu T, Wu X. Flavonoids from acai (Euterpe oleracea Mart.) pulp and their antioxidant and anti-inflammatory activities. Food Chem 2011;128:152–157.
  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 2013;14:3540–3555.
  • Kamiyama M, Shibamoto T. Flavonoids with potent antioxidant activity found in young green barley leaves. J Agric Food Chem 2012;60:6260–6267.
  • Cao J, Xia X, Chen X, Xiao J, Wang Q. Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food Chem Toxicol 2013;51:242–250.
  • Pérez-Gregorio MR, Regueiro J, Simal-Gándara J, Rodrigues A, Almeida DP. Increasing the added-value of onions as a source of antioxidant flavonoids: a critical review. Crit Rev Food Sci Nutr 2013;54:1050–1062.
  • Muhammad N, Saeed M, Adhikari A, Khan KM, Khan H. Isolation of a new bioactive cinnamic acid derivative from the whole plant of Viola betonicifolia. J Enzyme Inhib Med Chem 2013;28:997–1001.
  • Natella F, Nardini M, Di Felice M, Scaccini C. Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J Agric Food Chem 1999;47:1453–1459.
  • Ayres DC, Loike JD. Lignans: chemical, biological and clinical properties. Cambridge, UK: Cambridge University Press; 1990.
  • Landete J. Plant and mammalian lignans: a review of source, intake, metabolism, intestinal bacteria and health. Food Res Int 2012;46:410–424.
  • Saladino R, Gualandi G, Farina A, Crestini C, Nencioni L, Palamara AT. Advances and challenges in the synthesis of highly oxidised natural phenols with antiviral, antioxidant and cytotoxic activities. Curr Med Chem 2008;15:1500–1519.
  • Shogren RL, Biswas A. Preparation of starch-sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr Polym 2013;91:581–585.
  • Kostrzewa-Susłow E, Dmochowska-Gładysz J, Janeczko T. Microbial transformation of selected flavanones as a method of increasing the antioxidant properties. Z Naturforsch C 2010;65:56–60.
  • Hur HG, Rafii F. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett 2000;192:21–25.
  • Chemler JA, Leonard E, Koffas MA. Flavonoid biotransformations in microorganisms. In: Wienfield C, Davis K, Gould K, eds. Anthocyanins. New York: Springer; 2009:191–255.
  • Das S, Rosazza JP. Microbial and enzymatic transformations of flavonoids. J Nat Prod 2006;69:499–508.
  • Kostrzewa-Suslow E, Janeczko T. Microbial transformations of 7-hydroxyflavanone. Sci World J 2012;2012:254929. doi: 10.1100/2012/254929.
  • Macedo J, Battestin V, Ribeiro M, Macedo G. Increasing the antioxidant power of tea extracts by biotransformation of polyphenols. Food Chem 2011;126:491–497.
  • Bull J. The application of hydrolytic enzymes for biotransformations of natural products in non-aqueous reaction conditions [dissertation]. UK: University of Exeter; 2009.
  • Gulati R, Bhattacharya A, Prasad AK, Gupta R, Parmar V, Saxena RK. Biocatalytic potential of Fusarium globulosum lipase in selective acetylation/deacetylation reactions and in ester synthesis. J Appl Microbiol 2001;90:609–613.
  • Marvalin C, Azerad R. Microbial glucuronidation of polyphenols. J Mol Catal B Enzym 2011;73:43–52.
  • Mellou F, Lazari D, Skaltsa H, Tselepis A, Kolisis F, Stamatis H. Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. J Biotechnol 2005;116:295–304.
  • Ziaullah, Bhullar KS, Warnakulasuriya SN, Rupasinghe H. Biocatalytic synthesis, structural elucidation, antioxidant capacity and tyrosinase inhibition activity of long chain fatty acid acylated derivatives of phloridzin and isoquercitrin. Bioorg Med Chem 2013;21:684–692.
  • Katsoura MH, Polydera AC, Tsironis L, Tselepis AD, Stamatis H. Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency. J Biotechnol 2006;123:491–503.
  • Céliz G, Daz M. Biocatalytic preparation of alkyl esters of citrus flavanone glucoside prunin in organic media. Process Biochem 2011;46:94–100.
  • Zhang D-Y, Zu Y-G, Fu Y-J, Luo M, Wang W, Gu C-B, Yao X-H. Application of immobilized enzymes to accelerate the conversion of genistin to genistein in pigeon pea root extracts and the evaluation their antioxidant activity. Ind Crop Prod 2013;42:409–415.
  • Bruno FF, Nagarajan S, Nagarajan R, Kumar J, Samuelson LA. Biocatalytic synthesis of water‐soluble oligo (catechins). J Macromol Sci A 2005;42:1547–1554.
  • Furukawa H, Zenno S, Iwasawa Y, Morita H, Yoshida T, Nagasawa T. Ferulic acid production from clove oil by Pseudomonas fluorescens E118. J Biosci Bioeng 2003;96:404–405.
  • Rosazza JP, Huang Z, Dostal L, Volm T, Rousseau B. Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 1995;15:457–471.
  • Chigorimbo-Murefu NT, Riva S, Burton SG. Lipase-catalysed synthesis of esters of ferulic acid with natural compounds and evaluation of their antioxidant properties. J Mol Catal B Enzym 2009;56:277–282.
  • Mathew S, Abraham TE. Bioconversions of ferulic acid, an hydroxycinnamic acid. Crit Rev Microbiol 2006;32:115–125.
  • Adelakun OE, Kudanga T, Parker A, Green IR, le Roes-Hill M, Burton SG. Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity. J Mol Catal B Enzym 2012;74:29–35.
  • Tan Z, Shahidi F. Chemoenzymatic synthesis of phytosteryl ferulates and evaluation of their antioxidant activity. J Agric Food Chem 2011;59:12375–12383.
  • Tan Z, Shahidi F. A novel chemoenzymatic synthesis of phytosteryl caffeates and assessment of their antioxidant activity. Food Chem 2012;133:1427–1434.
  • Katsoura MH, Polydera AC, Tsironis LD, Petraki MP, Rajačić SK, Tselepis AD, Stamatis H. Efficient enzymatic preparation of hydroxycinnamates in ionic liquids enhances their antioxidant effect on lipoproteins oxidative modification. New Biotechnol 2009;26:83–91.
  • Compton DL, Laszlo JA. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil. Biotechnol Lett 2009;31:889–896.
  • Couto J, Karboune S, Mathew R. Regioselective synthesis of feruloylated glycosides using the feruloyl esterases expressed in selected commercial multi-enzymatic preparations as biocatalysts. Biocatal Biotransfor 2010;28:235–244.
  • Alvarado IE, Navarro D, Record E, Asther M, Asther M, Lesage-Meessen L. Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: an alternative for producing a strong natural antioxidant. World J Microbiol Biotechnol 2003;19:157–160.
  • Burton SG. Oxidizing enzymes as biocatalysts. Trends Biotechnol 2003;21:543–549.
  • Katsoura MH, Theodosiou E, Stamatis H, Kolisis FN. Strategies for the biocatalytic lipophilization of phenolic antioxidants. In: Fessner W-D, Anthonsen T, eds. Modern biocatalysis: stereoselective and environmentally friendly reactions. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2008:123–133.
  • Adelakun OE, Kudanga T, Green IR, le Roes-Hill M, Burton SG. Enzymatic modification of 2, 6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity. Process Biochem 2012;47:1926–1932.
  • Torres P, Reyes-Duarte D, Ballesteros A, Plou FJ. Lipase-catalyzed modification of phenolic antioxidants. Methods Mol Biol 2012;861:435–443.
  • Buisman G, van Helteren C, Kramer G, Veldsink J, Derksen J, Cuperus F. Enzymatic esterifications of functionalized phenols for the synthesis of lipophilic antioxidants. Biotechnol Lett 1998;20:131–136.
  • Ruiz MA, Reviejo AJ, Parrado C, Pingarrón JM. Development of an amperometric enzyme biosensor for the determination of the antioxidant tert‐butylhydroxyanisole in a medium of reversed micelles. Electroanalysis 1996;8:529–533.
  • Bungaruang L, Gutmann A, Nidetzky B. Leloir glycosyltransferases and natural product glycosylation: biocatalytic synthesis of the C‐glucoside nothofagin, a major antioxidant of redbush herbal tea. Adv Synth Catal 2013;355:2757–2763.
  • Ara KZG, Khan S, Kulkarni TS, Pozzo T, Karlsson EN. Glycoside hydrolases for extraction and modification of polyphenolic antioxidants. In: Shukla P, Pletschke BI, eds. Advances in Enzyme Biotechnology. India: Springer India; 2013:9–21.
  • Allouche N, Damak M, Ellouz R, Sayadi S. Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Appl Environ Microbiol 2004;70:2105–2109.
  • Orenes-Piñero E, García-Carmona F, Sánchez-Ferrer Á. A new process for obtaining hydroxytyrosol using transformed Escherichia coli whole cells with phenol hydroxylase gene from Geobacillus thermoglucosidasius. Food Chem 2013;139:377–383.
  • Izzo V, Notomista E, Scognamiglio R, Troncone L, Donadio G, Di Donato A. The catalytic potential of recombinant bacterial multicomponent monooxygenases ToMO and PH for the synthesis of antioxidant tyrosol and hydroxytyrosol in the strain E. coli/JM109. Metabolism and molecular systems for the biotransformation of aromatic molecules. Annual Project Meeting, Naples, Italy; 2010.
  • Kaki SS, Grey C, Adlercreutz P. Bioorganic synthesis, characterization and antioxidant activity of esters of natural phenolics and α-lipoic acid. J Biotechnol 2012;157:344–349.
  • Torres P, Poveda A, Jimenez-Barbero J, Ballesteros A, Plou FJ. Regioselective lipase-catalyzed synthesis of 3-O-acyl derivatives of resveratrol and study of their antioxidant properties. J Agric Food Chem 2009;58:807–813.
  • Stamatis H, Sereti V, Kolisis F. Studies on the enzymatic synthesis of lipophilic derivatives of natural antioxidants. J Am Oil Chem Soc 1999;76:1505–1510.
  • Goodwin CM. The laccase from Micromonospora SP. 044 30-1 as a biocatalyst for synthesis of antioxidant compounds. Cape Town, South Africa: University of Cape Town; 2010.
  • Piscitelli A, Amore A, Faraco V. Last advances in synthesis of added value compounds and materials by laccase mediated biocatalysis. Curr Org Chem 2012;16:2508–2524.
  • Junior MRM, Silva TA, Franchi GC, Nowill A, Pastore GM, Hyslop S. Antioxidant potential of aroma compounds obtained by limonene biotransformation of orange essential oil. Food Chem 2009;116:8–12.
  • El-Batal A, Hashem A-AM, Abdelbaky NM. Enhancement of some natural antioxidants activity via microbial bioconversion process using gamma irradiation and incorporation into gold nanoparticles. World Appl Sci J 2012;19:1–11.
  • Zhang X, Ye M, Li R, Yin J, Guo DA. Microbial transformation of curcumin by Rhizopus chinensis. Biocatal Biotransform 2010;28:380–386.
  • Allendes JA, Bustos DA, Pacciaroni ADV, Sosa VE, Bustos DA. Microbial functionalization of (-)-ambroxide by filamentous fungi. Biocatal Biotransform 2011;29:83–86.
  • Abourashed EA, Mikell JR, Khan IA. Bioconversion of silybin to phase I and II microbial metabolites with retained antioxidant activity. Bioorg Med Chem 2012;20:2784–2788.
  • Afzal M, Al-Awadi S, Oommen S. Antioxidant activity of biotransformed sex hormones facilitated by Bacillus stearothermophilus. In: Armstrong D, ed. Advanced protocols in oxidative stress II. Germany: Humana Press, Springer Links. 2009;594:349–356.
  • Afzal M, Al-Awadi S, Oommen S. Antioxidant activity of biotransformed sex hormones facilitated by Bacillus stearothermophilus. In: Armstrong D, ed. Advanced protocols in oxidative stress I. Germany: Humana Press, Springer Links. 2008;477:293–300.
  • Singh A, Kaplan DL. Biocatalytic route to ascorbic acid‐modified polymers for free‐radical scavenging. Adv Mater 2003;15:1291–1294.
  • Karmee SK. Biocatalytic synthesis of ascorbyl esters and their biotechnological applications. Appl Microbiol Biotechnol 2009;81:1013–1022.
  • Kidwai M, Mothsra P, Gupta N, Kumar SS, Gupta R. Green enzymatic synthesis of L-ascorbyl fatty acid ester: an antioxidant. Synth Commun 2009;39:1143–1151.
  • Liu Y, Wang J, Yan Y, Li J. Biocatalytic synthesis and antioxidant capacities of ascorbyl esters by Novozym 435 in tert-butanol system using different acyl donors. Afr J Biotechnol 2013;10:17282–17290.
  • Nazir N, Koul S, Qurishi MA, Najar MH, Zargar MI. Evaluation of antioxidant and antimicrobial activities of bergenin and its derivatives obtained by chemoenzymatic synthesis. Eur J Med Chem 2011;46:2415–2420.
  • Ncanana S, Burton S. Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer. J Mol Catal B 2007;44:66–71.
  • Mazzei R, Giorno L, Piacentini E, Mazzuca S, Drioli E. Kinetic study of a biocatalytic membrane reactor containing immobilized β-glucosidase for the hydrolysis of oleuropein. J Membrane Sci 2009;339:215–223.
  • Lim EK, Ashford DA, Hou B, Jackson RG, Bowles DJ. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol Bioeng 2004;87:623–631.
  • Jana A, Maity C, Kumar Halder S, Chandra Mondal K, Ranjan Pati B, Das Mohapatra PK. Enhanced tannase production by Bacillus subtilis PAB2 with concomitant antioxidant production. Biocatal Agric Biotechnol 2013;2:363–371.
  • Yu X, Li Y, Wu D. Microencapsulation of tannase by chitosan–alginate complex coacervate membrane: synthesis of antioxidant propyl gallate in biphasic media. J Chem Technol Biotechnol 2004;79:475–479.
  • Cerda A, Martínez ME, Soto C, Poirrier P, Perez-Correa JR, Vergara-Salinas JR, Zúñiga ME. The enhancement of antioxidant compounds extracted from Thymus vulgaris using enzymes and the effect of extracting solvent. Food Chem 2013;139:138–143.
  • Adelakun OE. Biocatalytic production of new antioxidant compounds and the characterization of their antioxidant effects [dissertation]. South Africa: Cape Peninsula University of Technology; 2012.
  • Adamczak M, Bornscheuer UT. Improving ascorbyl oleate synthesis catalyzed by Candida antarctica lipase B in ionic liquids and water activity control by salt hydrates. Process Biochem 2009;44:257–261.
  • Reyes-Duarte D, Lopez-Cortes N, Torres P, Comelles F, Parra J, Peña S, et al. Synthesis and properties of ascorbyl esters catalyzed by lipozyme TL IM using triglycerides as acyl donors. J Am Oil Chem Soc 2011;88:57–64.
  • Karmee SK. The synthesis, properties, and applications of ascorbyl esters. Lipid Technol 2011;23:227–229.
  • Lundt I, Yu S. 1,5-Anhydro-D-fructose: biocatalytic and chemical synthetic methods for the preparation, transformation and derivatization. Carbohydr Res 2010;345:181–190.
  • Kücük HB, Yusufoğlu A. Enantioselective synthesis of 3-hydroxytetradecanoic acid and its methyl ester enantiomers as new antioxidants and enzyme inhibitors. Monatsh Chem 2013;144:1087–1091.
  • Abbas CA. Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In: Querol A, Fleet A, eds. Yeasts in Food and Beverages. Germany: Springer; 2006:285–334.
  • Nugroho Prasetyo E, Kudanga T, Steiner W, Murkovic M, Nyanhongo GS, Guebitz GM. Laccase-generated tetramethoxy azobismethylene quinone (TMAMQ) as a tool for antioxidant activity measurement. Food Chem 2010;118:437–444.
  • López-Munguía A, Hernández-Romero Y, Pedraza-Chaverri J, Miranda-Molina A, Regla I, Martínez A, Castillo E. Phenylpropanoid glycoside analogues: enzymatic synthesis, antioxidant activity and theoretical study of their free radical scavenger mechanism. PLoS One 2011;6:e20115.
  • Yang Z. Enzymatic modification of antioxidants towards omega-3 oil protection [dissertation]. Denmark: Aarhus University; 2011.
  • Schmidt A, Beutel S, Gross E, Hilmer J-M, Scheper T. Biocatalytic formation of a bioactive dihydrochalcone by Eubacterium ramulus. J Biotechnol 2010;150:307.
  • Shimoda K, Hara T, Hamada H, Hamada H. Synthesis of curcumin β-maltooligosaccharides through biocatalytic glycosylation with Strophanthus gratus cell culture and cyclodextrin glucanotransferase. Tetrahedron Lett 2007;48:4029–4032.
  • Yu S. Enzymatic conversion of starch to antioxidants, antimicrobials and fine chemicals, the anhydrofructose technology. J Biotechnol 2005;118S1:S136.
  • Ren Y, Wu H, Li X, Lai F, Zhao G, Xiao X. A two-step, one-pot enzymatic method for preparation of duck egg white protein hydrolysates with high antioxidant activity. Appl Biochem Biotechnol 2013;172:1227–1240.
  • Tramice A, Andreotti G, Trincone A. Hydrosoluble antioxidants by enzymatic glucosylation of a vitamin E derivative using marine α-d-glucosidase from Aplysia fasciata. Mar Biotechnol (NY) 2011;13:773–781.
  • de Castro RJS, Sato HH. Advantages of an acid protease from Aspergillus oryzae over commercial preparations for production of whey protein hydrolysates with antioxidant activities. Biocatal Agric Biotechnol 2013;3:58–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.