1,776
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Oxidative radical cyclizations of diketopiperazines bearing an amidomalonate unit. Heterointermediate reaction sequences toward the asperparalines and stephacidins

, , , &
Pages S6-S17 | Received 07 Jul 2016, Accepted 06 Aug 2016, Published online: 02 Nov 2016

References

  • Finefield JM, Frisvad JC, Sherman DH, Williams RM. Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids. J Nat Prod 2012;75:812–833.
  • Kagiyama I, Kato H, Nehira T, Frisvad JC, Sherman DH, Williams RM, Tsukamoto S. Taichunamides: prenylated indole alkaloids from aspergillus taichungensis (IBT 19404). Angew Chem Int Ed 2016;55:1128–1132.
  • Williams RM. Total synthesis and biosynthesis of the paraherquamides: an intriguing story of the biological Diels-Alder construction. Chem Pharm Bull 2002;50:711–740.
  • Miller KA, Williams RM. Synthetic approaches to the bicyclo[2.2.2]diazaoctane ring system common to the paraherquamides, stephacidins and related prenylated indole alkaloids. Chem Soc Rev 2009;38:3160–3174.
  • Williams RM. Natural products synthesis: enabling tools to penetrate nature's secrets of biogenesis and biomechanism. J Org Chem 2011;76:4221–4259.
  • Nising CF. Recent synthetic approaches towards the antiproliferative natural products avrainvillamide and stephacidin B. Chem Soc Rev 2010;39:591–599.
  • Porter AEA, Sammes PG. A Diels–Alder reaction of possible biosynthetic importance. J Chem Soc D 1970:1103a–1103a.
  • Miller KA, Tsukamoto S, Williams RM. Asymmetric total syntheses of (+)- and (-)-versicolamide B and biosynthetic implications. Nat Chem 2009;1:63–68 and cited ref.
  • Jin S, Wessig P, Liebscher J. Intermolecular and intramolecular Diels-Alder cycloadditions of 3-ylidenepiperazine-2,5-diones and 5-acyloxy-2(1H)-pyrazinones. J Org Chem 2001;66:3984–3997.
  • Morris EN, Nenninger EK, Pike RD, Scheerer JR. Diels-Alder cycloaddition of chiral nonracemic 2,5-diketopiperazine dienes. Org Lett 2011;13:4430–4433.
  • Margrey KA, Chinn AJ, Laws SW, Pike RD, Scheerer JR. Efficient entry to the [2.2.2]-diazabicyclic ring system via diastereoselective domino reaction sequence. Org Lett 2012;14:2458–2461.
  • Laws SW, Scheerer, JR. Enantioselective synthesis of (+)-malbrancheamide B. J Org Chem 2013;78:2422–2429.
  • Robins JG, Kyu KJ, Chinn AJ, Woo JS, Scheerer JR. Intermolecular Diels–Alder cycloaddition for the construction of bicyclo[2.2.2]diazaoctane structures: formal synthesis of brevianamide B and premalbrancheamide. J Org Chem 2016;81:2293–2301.
  • Qin WF, Xiao T, Zhang D, Deng LF, Wang Y, Qin Y. Total synthesis of (–)-depyranoversicolamide B. Chem Commun 2015;51:16143–16146.
  • Cabanillas A, Davies CD, Male L, Simpkins NS. Highly enantioselective access to diketopiperazines via cinchona alkaloid catalyzed Michael additions. Chem Sci 2015;6:1350–1354.
  • Williams RM, Glinka T, Kwast E. Facial selectivity of the intramolecular SN2' cyclization: stereocontrolled total synthesis of brevianamide B. J Am Chem Soc 1988;110:5927–5929.
  • Williams RM, Glinka T, Kwast E, Coffman H, Stille JK. Asymmetric, stereocontrolled total synthesis of (–)-brevianamide B. J Am Chem Soc 1990;112:808–821.
  • Artman GD, Grubbs AW, Williams RM. Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B. J Am Chem Soc 2007;129:6336–6342.
  • Cushing TD, Sanz-Cervera JF, Williams RM. Stereocontrolled total synthesis of (+)-paraherquamide B. J Am Chem Soc 1993;115:9323–9324.
  • Cushing TD, Sanz-Cervera JF, Williams RM. Stereocontrolled total synthesis of (+)-paraherquamide B. J Am Chem Soc 1996;118:557–579.
  • Williams RM, Cao J, Tsujishima H. Asymmetric, stereocontrolled total synthesis of paraherquamide A. Angew Chem Int Ed 2000;39:2540–2544.
  • Williams RM, Cao J, Tsujishima H, Cox RJ. Asymmetric, stereocontrolled total synthesis of paraherquamide A. J Am Chem Soc 2003;125:12172–12178.
  • Mercado-Marin EV, Sarpong R. Unified approach to prenylated indole alkaloids: total syntheses of (–)-17-hydroxy-citrinalin B, (+)-stephacidin A, and (+)-notoamide I. Chem Sci 2015;6:5048–5052.
  • Herzon SB, Myers AG. Enantioselective synthesis of stephacidin B. J Am Chem Soc 2005;127:5342–5344.
  • Trost BM, Cramer N, Bernsmann H. Concise total synthesis of (+/-)-marcfortine B. J Am Chem Soc 2007;129:3086–3087.
  • Trost BM, Bringley DA, Zhang T, Cramer N. Rapid access to spirocyclic oxindole alkaloids: application of the asymmetric palladium-catalyzed [3 + 2] trimethylenemethane cycloaddition. J Am Chem Soc 2013;135:16720–16735.
  • Frebault F, Simpkins NS, Fenwick A. Concise enantioselective synthesis of ent-malbrancheamide B. J Am Chem Soc 2009;131:4214–4215.
  • Pichowicz M, Simpkins NS, Blake AJ, Wilson C. Studies towards complex bridged alkaloids: regio- and stereocontrolled enolate chemistry of 2,5-diketopiperazines. Tetrahedron 2008;64:3713–3735.
  • Frebault FC, Simpkins NS. A cationic cyclisation route to prenylated indole alkaloids: synthesis of malbrancheamide B and brevianamide B, and progress towards stephacidin A. Tetrahedron 2010;66:6585–6596.
  • Simpkins N, Pavlakos I, Male L. Rapid access to polycyclic indolines related to the stephacidin alkaloids using a radical cascade. Chem Commun 2012;48:1958–1960.
  • Simpkins NS, Pavlakos I, Weller MD, Male L. The cascade radical cyclisation approach to prenylated alkaloids: synthesis of stephacidin A and notoamide B. Org Biomol Chem 2013;11:4957–4970.
  • Baran PS, Guerrero CA, Ambhaikar NB, Hafensteiner BD. Short, enantioselective total synthesis of Stephacidin A. Angew Chem Int Ed 2005;44:606–609.
  • Baran PS, Guerrero CA, Hafensteiner BD, Ambhaikar NB. Total synthesis of avrainvillamide (CJ-17,665) and stephacidin B. Angew Chem Int Ed 2005;44:3892–3895.
  • Baran PS, Hafensteiner BD, Ambhaikar NB, Guerrero CA, Gallagher JD. Enantioselective total synthesis of avrainvillamide and the stephacidins. J Am Chem Soc 2006;128:8678–8693.
  • Jahn U, Hartmann P. Electron transfer-induced sequential transformations of malonates by the ferrocenium ion. Chem Commun 1998:209–210.
  • Jahn U, Müller M, Aussieker S. The combination of anionic and radical reactions to oxidative tandem processes exemplified by the synthesis of functionalized pyrrolidines. J Am Chem Soc 2000;122:5212–5213.
  • Jahn U, Hartmann P, Dix I, Jones PG. Lithium malonate enolates as precursors for radical reactions - Convenient induction of radical cyclizations with either radical or cationic termination. Eur J Org Chem 2001:3333–3355.
  • Jahn U. Tandem anionic Michael addition/radical cyclizations: a new and efficient strategy for the synthesis of functionalized cyclopentanes. Chem Commun 2001:1600–1601.
  • Jahn U, Rudakov D. Cu(II)-mediated one-pot alkoxide conjugate addition/radical cyclizations as a versatile method to highly functionalized tetrahydrofuran derivatives. Synlett 2004:1207–1210.
  • Jahn U, Rudakov D. Tetrahydrofuran lignans via tandem oxidative anionic-radical processes or reductive radical cyclizations. Org Lett 2006;8:4481–4484.
  • Jahn U, Dinca E. Total synthesis of 15-F2t-isoprostane by using a new oxidative cyclization of distonic radical anions as the key step. Chem Eur J 2009;15:58–62.
  • Jahn U, Kafka F, Pohl R, Jones PG. N,3,4-Trisubstituted pyrrolidines by electron transfer-induced oxidative cyclizations of N-allylic β-amino ester enolates. Tetrahedron 2009;65:10917–10929.
  • Jahn U, Dinca E. Toward the elucidation of the metabolism of 15-E2-isoprostane: the total synthesis of the methyl ester of a potential central metabolite. J Org Chem 2010;75:4480–4491.
  • Jagtap PR, Ford L, Deister E, Pohl R, Císařová I, Hodek J, et al. Highly functionalized and potent antiviral cyclopentane derivatives formed by a tandem process consisting of organometallic, transition-metal-catalyzed, and radical reaction steps. Chem Eur J 2014;20:10298–10304.
  • Kafka F, Holan M, Hidasová D, Pohl R, Císařová I, Klepetářová B, Jahn U. Oxidative catalysis using the stoichiometric oxidant as a reagent: an efficient strategy for single-electron-transfer-induced tandem anion-radical reactions. Angew Chem Int Ed 2014;53:9944–9948.
  • Holan M, Pohl R, Císařová I, Klepetářová B, Jones PG, Jahn U. Highly functionalized cyclopentane derivatives by tandem Michael addition/radical cyclization/oxygenation reactions. Chem Eur J 2015;21:9877–9888.
  • It was shown in 2002 that the stable form of these peptide coupling agents are the less reactive guanidinium forms. Both forms are capable of activating the carboxylic acids: Carpino LA, Imazumi H, El-Faham A, Ferrer FJ, Zhang C, Lee Y, Foxman BM, et al. The uronium/guanidinium peptide coupling reagents: Finally the true uronium salts. Angew Chem Int Ed 2002;41:441–445.
  • Amatov T, Pohl R, Cisařová I, Jahn U. Synthesis of bridged diketopiperazines by using the persistent radical effect and a formal synthesis of bicyclomycin. Angew Chem Int Ed 2015;54:12153–12157.
  • Farran D, Parrot I, Martinez J, Dewynter G. Transannular rearrangement of activated lactams: stereoselective synthesis of substituted pyrrolidine-2,4-diones from diketopiperazines. Angew Chem Int Ed 2007;46:7488–7490.
  • Farran D, Parrot I, Toupet L, Martinez J, Dewynter G. Transannular rearrangement of activated 2,5-diketopiperazines: a key route to original scaffolds. Org Biomol Chem 2008;6:3989–3996.
  • Coursindel T, Restouin A, Dewynter G, Martinez J, Collette Y, Parrot I. Stereoselective ring contraction of 2,5-diketopiperazines: an innovative approach to the synthesis of promising bioactive 5-membered scaffolds. Bioorg Chem 2010;38:210–217.
  • Fischer H. The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem Rev 2001;101:3581–3610.
  • Studer A. The persistent radical effect in organic synthesis. Chem Eur J 2001;7:1159–1164.
  • Studer, A. Tin-free radical chemistry using the persistent radical effect: alkoxyamine isomerization, addition reactions and polymerizations. Chem Soc Rev 2004;33:267–273.
  • Studer A, Schulte T. Nitroxide-mediated radical processes. Chem Rec 2005;5:27–35.
  • Snider BB. Manganese(III)-based oxidative free-radical cyclizations. Chem Rev 1996;96:339–363.
  • Melikyan GG. Carbon?carbon bond-forming reactions promoted by trivalent manganese. Org React. 1997;49:427–675.
  • Snider BB. Mechanisms of Mn(OAc)3-based oxidative free-radical additions and cyclizations. Tetrahedron 2009;65:10738–10744.
  • Mondal M, Bora U. Recent advances in manganese(III) acetate mediated organic synthesis. RSC Adv 2013;3:18716–18754.
  • Demir AS, Emrullahoglu M. Manganese(III) acetate: a versatile reagent in organic chemistry. Curr Org Synth 2007;4:223–237.
  • Citterio A, Marion A, Maronati A, Nicolini M. Mn(III) acetate induced addition of α-amidomalonic ester derivatives to conjugated olefins. Tetrahedron Lett 1993;34:7981–7984.
  • Crocker PJ, Karlssonandreasson U, Lotz BT, Miller MJ. Preparation of β-lactams from β-hydroxy amides, and annulation of N-malonyl β-lactams by manganese(III) acetate-promoted free radical cyclization and by aldol cyclization. Heterocycles 1995;40:691–716.
  • Crocker PJ, Miller MJ. Oxidative free-radical cyclization as a method for annulating β-lactams: Syntheses of functionalized carbacephams. J Org Chem 1995;60:6176–6179.
  • Logan AWJ, Sprague SJ, Foster RW, Marx LB, Garzya V, Hallside MS, et al. Diastereoselective synthesis of fused lactone-pyrrolidinones; application to a formal synthesis of (-)-salinosporamide A. Org Lett 2014;16:4078–4081.
  • Keane HA, Hess W, Burton JW. Manganese(III)-mediated radical cyclisations for the (Z)-selective synthesis of exo-alkylidene pyrrolidinones and pyrrolidines. Chem Commun 2012;48:6496–6498.
  • Anderson JM, Kochi JK. Manganese(III) complexes in oxidative decarboxylation of acids. J Am Chem Soc 1970;92:2450–2460.
  • Crick PJ, Simpkins NS, Highton A. Synthesis of the asperparaline core by a radical cascade. Org Lett 2011;13:6472–6475.