8,532
Views
98
CrossRef citations to date
0
Altmetric
Original Article

Fatty acid-related modulations of membrane fluidity in cells: detection and implications

, , , , , , , , , , , & show all
Pages S40-S50 | Received 28 Jun 2016, Accepted 28 Aug 2016, Published online: 25 Oct 2016

References

  • Sul HS, Smith S. Fatty acid synthesis in eukaryotes. In: Vance JE, Vance D, eds. Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier; 2008:155–190.
  • Miyazaki M, Ntambi JM. Fatty acid desaturation and chain elongation in mammals. In: Vance JE, Vance D, eds. Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier; 2008:191–211.
  • Beck C. Assembly and secretion of atherogenic lipoproteins. In: Vance JE, Vance D, eds. Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier; 2008:507–532.
  • Buczynski MW, Dumlao DS, Dennis EA. Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 2009;50:1015–1038.
  • Norris PC, Dennis EA. A lipidomic perspective on inflammatory macrophage eicosanoid signaling. Adv Biol Regul 2014;54:99–110.
  • Maulucci G, Daniel B, Cohen O, Avrahami Y, Sasson S. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016;49:49–77.
  • Kahremany S, Livne A, Gruzman A, Senderowitz H, Sasson S. Activation of PPARδ: from computer modelling to biological effects. Br J Pharmacol 2015;172:754–770.
  • Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferreri C, et al. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic Biol Med 2013;65:978–987.
  • Riahi Y, Cohen G, Shamni O, Sasson S. Signaling and cytotoxic functions of 4-hydroxyalkenals. Am J Physiol Endocrinol Metab 2010;299:E879–E886.
  • Cohen G, Riahi Y, Shamni O, Guichardant M, Chatgilialoglu C, Ferreri C, et al. Role of lipid peroxidation and PPAR-δ in amplifying glucose-stimulated insulin secretion. Diabetes 2011;60:2830–2842.
  • Cohen G, Shamni O, Avrahami Y, Cohen O, Broner EC, Filippov-Levy N, et al. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia 2015;58:1333–1343.
  • Bolognesi A, Chatgilialoglu A, Polito L, Ferreri C. Membrane lipidome reorganization correlates with the fate of neuroblastoma cells supplemented with fatty acids. PLoS One 2013;8:e55537.
  • Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A bioactive lipid peroxidation product. Biomolecules 2015;5:2247–2337.
  • Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 2008;8:37–49.
  • Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011;471:363–367.
  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008;9:112–124.
  • de la Haba C, Palacio JR, Martínez P, Morros A. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages. Biochim Biophys Acta 2013;1828:357–364.
  • Mazzanti L, Faloia E, Rabini RA, Staffolani R, Kantar A, Fiorini R, et al. Diabetes mellitus induces red blood cell plasma membrane alterations possibly affecting the aging process. Clin Biochem 1992;25:41–46.
  • Maulucci G, Troiani D, Eramo SLM, Paciello F, Podda MV, Paludetti G, et al. Time evolution of noise induced oxidation in outer hair cells: role of NAD(P)H and plasma membrane fluidity. Biochim Biophys Acta 2014;1840:2192–2202.
  • Bagatolli LA, Parasassi T, Fidelio GD, Gratton E. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Photochem Photobiol 1999;70:557–564.
  • Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 1991;60:179–189.
  • Bagatolli LA, Gratton E. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 2000;78:290–305.
  • Maulucci G, Pani G, Labate V, Mele M, Panieri E, Papi M, et al. Investigation of the spatial distribution of glutathione redox-balance in live cells by using fluorescence ratio imaging microscopy. Biosens Bioelectron 2009;25:682–687.
  • Maulucci G, Labate V, Mele M, Panieri E, Arcovito G, Galeotti T, et al. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein. Sci Signal 2008;1:pl3.
  • Maulucci G, Pani G, Fusco S, Papi M, Arcovito G, Galeotti T, et al. Compartmentalization of the redox environment in PC-12 neuronal cells. Eur Biophys J 2010;39:993–999.
  • Balogh G, Maulucci G, Gombos I, Horváth I, Török Z, Péter M, et al. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells. PLoS One 2011;6:e21182.
  • Angelucci C, Maulucci G, Lama G, Proietti G, Colabianchi A, Papi M, et al. Epithelial-stromal interactions in human breast cancer: effects on adhesion, plasma membrane fluidity and migration speed and directness. PLoS One 2012;7:e50804.
  • Angelucci C, Maulucci G, Colabianchi A, Iacopino F, D’Alessio A, Maiorana A, et al. Stearoyl-CoA desaturase 1 and paracrine diffusible signals have a major role in the promotion of breast cancer cell migration induced by cancer-associated fibroblasts. Br J Cancer 2015;112:1675–1686.
  • Pigeau GM, Kolic J, Ball BJ, Hoppa MB, Wang YW, Ru T, et al. Insulin granule recruitment and exocytosis is dependent on p110 γ in insulinoma and human β-cells. 2009;58:2084–2092.
  • Khan MI, Anjum FM, Sohaib M, Sameen A. Tackling metabolic syndrome by functional foods. Rev Endocr Metab Disord 2013;14:287–297.
  • Sofer S, Stark AH, Madar Z. Nutrition targeting by food timing: time-related dietary approaches to combat obesity and metabolic syndrome. Adv Nutr 2015;6:214–223.
  • Bassi N, Karagodin I, Wang S, Vassallo P, Priyanath A, Massaro E, Stone NJ. Lifestyle modification for metabolic syndrome: a systematic review. Am J Med 2014;127:1242.e1–1242.e10.
  • Cnop M. Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochem Soc Trans 2008;36:348–352.
  • Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 2008;29:351–366.
  • Srinivasan VAR, Raghavan VA, Parthasarathy S. Biochemical basis and clinical consequences of glucolipotoxicity: a primer. Heart Fail Clin 2012;8:501–511.
  • Krebs M, Roden M. Nutrient-induced insulin resistance in human skeletal muscle. Curr Med Chem 2004;11:901–908.
  • Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 1992;130:167–178.
  • Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Aspects Med 2015;42:19–41.
  • Mohammed AM, Chen F, Kowluru A. The two faces of protein palmitoylation in islet β-cell function: potential implications in the pathophysiology of islet metabolic dysregulation and diabetes. Recent Pat Endocr Metab Immune Drug Discov 2013;7:203–212.
  • Giacca A, Xiao C, Oprescu AI, Carpentier AC, Lewis GF. Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies. Am J Physiol Endocrinol Metab 2011;300:E255–E262.
  • Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontés G. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta 2010;1801:289–298.
  • Petropoulou P-I, Berbée JFP, Theodoropoulos V, Hatziri A, Stamou P, Karavia EA, et al. Lack of LCAT reduces the LPS-neutralizing capacity of HDL and enhances LPS-induced inflammation in mice. Biochim Biophys Acta 2015;1852:2106–2115.
  • Filou S, Lhomme M, Karavia EA, Kalogeropoulou C, Theodoropoulos V, Zvintzou E, et al. Distinct roles of apolipoproteins A1 and E in the modulation of high-density lipoprotein composition and function. Biochemistry 2016;55:3752–3762.
  • Ibarguren M, López DJ. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim Biophys Acta – Biomembr 2014;1838:1518–1528.
  • Mouritsen OG. Life – as a matter of fat. Berlin/Heidelberg: Springer-Verlag; 2005.
  • Ma Z, Lee SS, Meddings JB. Effects of altered cardiac membrane fluidity on beta-adrenergic receptor signalling in rats with cirrhotic cardiomyopathy. J Hepatol 1997;26:904–912.
  • Przybylska M, Jóźwiak Z. Relevance of drug uptake, cellular distribution and cell membrane fluidity to the enhanced sensitivity of Down's syndrome fibroblasts to anticancer antibiotic-mitoxantrone. Biochim Biophys Acta 2003;1611:161–170.
  • Papi M, Maulucci G, De Spirito M, Missori M, Arcovito G, Lancellotti S, et al. Ristocetin-induced self-aggregation of von Willebrand factor. Eur Biophys J 2010;39:1597–1603.
  • Richter C. Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids 2010;44:175–189.
  • Wong-Ekkabut J, Xu Z, Triampo W, Tang I-M, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 2007;93:4225–4236.
  • Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, et al. Pathological aspects of lipid peroxidation. Free Radic Res 2010;44:1125–1171.
  • Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 2009;157:1–11.
  • Cohen G, Riahi Y, Sasson S. Free radicals and metabolic disorders. In: Chatgilialoglu C, Studer A, eds. Handbook of radicals in chemistry & biology. Chichester, UK: John Wiley & Sons, Ltd; 2012:1679–1700.
  • Lands WE. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem 1958;231:883–888.
  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, et al. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 2006;148:619–628.
  • Boslem E, Meikle PJ, Biden TJ. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets 2012;4:177–187.
  • Jaganjac M, Tirosh O, Cohen G, Sasson S, Zarkovic N. Reactive aldehydes-second messengers of free radicals in diabetes mellitus. Free Radic Res 2013;47:39–48.
  • Linn SC, Kim HS, Keane EM, Andras LM, Wang E, Merrill AH. Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans 2001;29:831–835.
  • Kota V, Hama H. 2′-Hydroxy ceramide in membrane homeostasis and cell signaling. Adv Biol Regul 2014;54:223–230.
  • Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014;54:53–67.
  • Chavda B, Arnott JA, Planey SL. Targeting protein palmitoylation: selective inhibitors and implications in disease. Expert Opin Drug Discov 2014;9:1005–1019.
  • Tabas I. Biochemistry of lipids, lipoproteins and membranes. Amsterdam, Netherlands: Elsevier; 2008.
  • Zannis VI, Chroni A, Kypreos KE, Kan H-Y, Cesar TB, Zanni EE, Kardassis D. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Curr Opin Lipidol 2004;15:151–166.
  • Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 2006;84:276–294.
  • Segrest JP, Li L, Anantharamaiah GM, Harvey SC, Liadaki KN, Zannis V. Structure and function of apolipoprotein A-I and high-density lipoprotein. Curr Opin Lipidol 2000;11:105–115.
  • Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, eds. The metabolic and molecular bases of inherited disease. 8th ed. New-York: McGraw-Hill; 2001:7012 p.