166
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Impact of cyanogen iodide in killing of Escherichia coli by the lactoperoxidase-hydrogen peroxide-(pseudo)halide system

, , , &
Pages 1287-1295 | Received 30 Jun 2016, Accepted 09 Sep 2016, Published online: 12 Oct 2016

References

  • Kussentrager KD, van Hooijdonk ACM. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr 2000;84:S19–S25.
  • Flemmig J, Gau J, Schlorke D, Arnhold J. Lactoperoxidase as a potential drug target. Expert Opin Ther Targets 2016;20:447–461.
  • Chandler JD, Day BJ. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol 2012;84:1381–1387.
  • Seifu E, Buys EM, Donkin EF. Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends Food Sci Technol 2005;16:137–154.
  • Sharma S, Singh AK, Kaushik S, Sinha M, Singh RP, Sharma P, et al. Lactoperoxidase: structural insights into the function, ligand binding and inhibition. Int J Biochem Mol Biol 2013;4:108–128.
  • Bafort F, Parisi O, Perraudin J-P, Jijakli MH. Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res 2014;517164. doi: 10.1155/2014/517164.
  • Klebanoff SJ. Iodination of bacteria: a bactericidal mechanism. J Exp Med 1967;126:1063–1078.
  • Thomas EL, Aune TM. Oxidation of Escherichia coli sulfhydryl components by the peroxidase-hydrogen peroxide-iodide antimicrobial system. Antimicrob Agents Chemother 1978;13:1006–1010.
  • Furtmüller PG, Jantschko W, Regelsberger G, Jakopitsch C, Arnhold J, Obinger C. Reaction of lactoperoxidase compound I with halides and thiocyanate. Biochemistry 2002;41:11895–11900.
  • Schlorke D, Flemmig J, Birkemeyer C, Arnhold J. Formation of cyanogen iodide by lactoperoxidase. J Inorg Biochem 2016;154:35–41.
  • Bak B, Hillebert A. Cyanogen iodide. Org Synth 1952;32:29–31.
  • Bernheim F. The effect of cyanogen iodide and mercuric chloride on the permeability of cells of Pseudomonas aeruginosa and the antagonistic action of sulfhydryl compounds. Proc Soc Exp Biol Med 1971;138:444–447.
  • Thomas EL, Aune TM. Susceptibility of Escherichia coli to bactericidal action of lactoperoxidase, peroxide, and iodide or thiocyanate. Antimicrob Agents Chemother 1978;13:261–265.
  • Thomas EL, Aune TM. Lactoperoxidase, peroxide, thiocyanate antimicrobial system: correlation of sulfhydryl oxidation with antimicrobial action. Infect Immun 1978;20:456–463.
  • Guthrie WG. A novel adaptation of a naturally occurring antimicrobial system for cosmetic protection. SÖFW J 1992;118:556–562.
  • Fweja LWT, Lewis MJ, Grandison AS. Challenge testing the lactoperoxidase system against a range of bacteria using different activation agents. J Dairy Sci 2008;91:2566–2574.
  • Atosuo J, Lehtinen J, Vojtek L, Lilius E-M. Escherichia coli K-12 (pEGFPluxABCDEamp): a tool for analysis of bacterial killing by antibacterial agents and human complement activities on a real-time basis. Luminescence 2013;28:771–779.
  • Beers RF, Sizer IW, A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952;195:133–140.
  • van Dalen CJ, Whitehouse MW, Winterbourn CC, Kettle AJ. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 1997;327:487–492.
  • Flemmig J, Rusch D, Czerwinska ME, Rauwald HW, Arnhold J. Components of a standardised olive leaf dry extract (Ph. Eur.) promote hypothiocyanite production by lactoperoxidase. Arch Biochem Biophys 2014;549:17–25.
  • Gensch KH, Higuchi T. Kinetic investigation of reversible reaction between methionine and iodine. Improved iodometric determination of methionine. J Pharmaceut Sci 1967;56:177–184.
  • Chikwana E, Davis B, Morakinyo MK, Simoyi RH. Oxyhalogen-sulfur chemistry – kinetics and mechanism of oxidation of methionine by aqueous iodine and acidified iodate. Can J Chem 2009;87:689–697.
  • Beal JL, Foster SB, Ashby MT. Hypochlorous acid reacts with the N-terminal methionines of proteins to give dehydromethionine, a potential biomarker for neutrophil-induced oxidative stress. Biochemistry 2009;48:11142–11148.
  • Peskin AV, Tuner R, Maghzal GJ, Winterbourn CC, Kettle AJ. Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry 2009;48:10175–10182.
  • Atosuo JT, Lilius E-M. The real-time-based assessment of the microbial killing by the antimicrobial compounds of neutrophils. ScientificWorldJournal 2011;11:2382–2390.
  • Meineke C. Über das Verhalten von Jodcyan zu Jodkalium und unterschwefligsaurem Natron in saurer Lösung. Z Anorg Chem 1892;2:157–164.
  • Rupp E, Schied A. Ueber die Jodometrie des Rhodanwasserstoffs. Ber Dt Chem Ges 1902;35:2191–2195.
  • Thiel A. Zur Jodometrie des Rhodanwasserstoffs. Ber Dt Chem Ges 1902;35:2766–2768.
  • Bosch EH, Van Doorne H, De Vries S. The lactoperoxidase system: the influence of iodide and the chemical and antimicrobial stability over the period of about 18 months. J Appl Microbiol 2000;89:215–224.
  • Ihalin R, Loimaranta V, Lenander-Lumikari M, Tenovuo J. The sensitivity of Porphyromonas gingivalis and Fusobacterium nucleatum to different (pseudo)halide-peroxidase combinations compared with mutans streptococci. J Med Microbiol 2001;50:42–48.
  • Ahariz M, Courtois P. Candida albicans susceptibility to lactoperoxidase-generated hypoiodite. Clin Cosmet Investig Dent 2010;2:69–78.
  • Yost DM, Stone WE. The complex ions formed by iodine cyanide with cyanide and iodide ions. The vapor pressure, free energy and dissociation of iodine cyanide. J Am Chem Soc 1933;55:1889–1895.
  • Gottardi W. Iodine and disinfection: theoretical study on mode of action, efficiency, stability, and analytical aspects in the aqueous system. Arch Pharm 1999;332:151–157.
  • Wever R, Kast WM, Kasinoedin JH, Boelens R. The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochim Biophys Acta 1982;709:212–219.
  • Barrett TJ, Hawkins CL. Hypothiocyanous acid: benign or deadly? Chem Res Toxicol 2012;25:263–273.
  • Thomas EL. Lactoperoxidase-catalyzed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate. Biochemistry 1981;20:3272–3280.
  • Nagy P, Jameson GN, Winterbourn CC. Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione. Chem Res Toxicol 2009;22:1833–1840.
  • Huwiler M, Kohler H. Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/H2O2/iodide system. Eur J Biochem 1984;141:69–74.
  • Tenovuo J, Makinen KK. Concentration of thiocyanate and ionizable iodine in saliva of smokers and nonsmokers. J Dent Res 1976;55:661–663.
  • Schultz CP, Ahmed MK, Dawes C, Mantsch HH. Thiocyanate levels in human saliva: quantitation by Fourier transform infrared spectroscopy. Anal Biochem 1996;240:7–12.
  • Fragoso MA, Fernandez V, Forteza R, Randell SH, Salathe M, Connor GE. Transcellular thiocyanate transport by human airway epithelia. J Physiol (Lond) 2004;561:183–194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.