287
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors

, , , , , , & show all
Pages 1361-1373 | Received 05 Aug 2016, Accepted 10 Oct 2016, Published online: 07 Nov 2016

References

  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon Press; 1989.
  • Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 2015;97:55–74.
  • Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7:65–74.
  • Zhang H, Tsao R. Dietary polyphenols, oxidative stress, antioxidant and anti-inflammatory effects. Curr Opin Food Sci 2016;8:33–42.
  • Kovacic P, Somanathan R, Abadjian M-CZ. Natural monophenols as therapeutics, antioxidants and toxins; electron transfer, radicals and oxidative stress. Nat Products J 2015;5:142–151.
  • Margaritelis NV. Antioxidants as therapeutics in the intensive care unit: have we ticked the redox boxes. Pharmacol Res 2016;111:126–132.
  • Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016;21:1–15.
  • Agrawal M. Natural polyphenols based new therapeutic avenues for advanced biomedical applications. Drug Metab Rev 2015;47:420–430.
  • Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR. Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 2015;173:501–513.
  • Margina D, Ilie M, Gradinaru D, Androutsopoulos VP, Kouretas D, Tsatsakis AM. Natural products-friends or foes? Toxicol Lett 2015;236:154–167.
  • D’Andrea G. Quercetin: a flavonol with multifaceted therapeutic applications. Fitoterapia 2015;106:256–271.
  • Amália PM, Possa MN, Augusto MC, Francisca LS. Quercetin prevents oxidative stress in cirrhotic rats. Dig Dis Sci 2007;52:2616–2621.
  • Gostner JM, Becker K, Ueberall F, Fuchs D. The good and bad of antioxidant foods: an immunological perspective. Food Chem Toxicol 2015;80:72–79.
  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules 2014;19:20091–20112.
  • Lee W-H, Loo C-Y, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv 2014;11:1183–1201.
  • Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 2010;17:190–197.
  • Salem M, Rohanib S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv 2014;4:10815–10829.
  • Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011;10:1–19.
  • Peh HY, Deniel Tan WS, Liao W, Fred Wong WS. Vitamin E therapy beyond cancer: tocopherol versus tocotrienol. Pharmacol Ther 2016;162:152–169.
  • Niki E. Evidence for beneficial effects of vitamin E. Korean J Intern Med 2015;30:571–579.
  • Kamisah Y, Qodriyah HMS, Chua KH, Nur Azlina MF. Vitamin E: a potential therapy for gastric mucosal injury. Pharm Biol 2014;52:1591–1597.
  • Duhem N, Danhier F, Préat V. Vitamin E-based nanomedicines for anti-cancer drug delivery. J Control Release 2014;182:33–44.
  • Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 2014;66:3–12.
  • Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003;23:363–398.
  • Esatbeyoglu T, Huebbe P, Insa MA, DawnChin E, Wagner AE, Rimbach G. Curcumin – from molecule to biological function. Angew Chem Int Ed Engl 2012;51:5308–5332.
  • Priyadarsini KI. Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C 2009;10:81–96.
  • Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol 2008;76:1590–1611.
  • Ou J-L, Mizushina Y, Wang S-Y, Chuang D-Y, Nadar M, Hsu W-L. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J 2013;280:5829–5840.
  • Dai F, Chen W-F, Zhou B, Yang L, Liu Z-L. Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Phytother Res 2009;23:1220–1228.
  • Wei Q-Y, Che W-F, Zhou B, Yang L, Liu Z-L. Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta 2006;1760:70–77.
  • Shang Y-J, Jin X-L, Shang X-L, Tang J-J, Liu G-Y, Dai F, et al. Antioxidant capacity of curcumin-directed analogues: structure–activity relationship and influence of microenvironment. Food Chem 2010;119:1435–1442.
  • Qiu X, Liu Z, Shao W-Y, Liu X, Jing D-P, Yu Y-J, et al. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors. Bioorg Med Chem 2008;16:8035–8041.
  • Feng J-Y, Liu Z-Q. Feruloylacetone as the model compound of half-curcumin: synthesis and antioxidant properties. Eur J Med Chem 2011;46:1198–1206.
  • Ravindran J, Subbaraju GV, Ramani MV, Sung B, Aggarwal BB. Bisdemethylcurcumin and structurally related hispolon analogues of Curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro. Biochem Pharmacol 2010;79:1658–1666.
  • Chakraborti S, Dhar G, Dwivedi V, Das A, Poddar A, Chakraborti G, et al. Stable and potent analogues derived from the modification of the dicarbonyl moiety of curcumin. Biochemistry 2013;52:7449–7460.
  • Wang J, Hu F, Luo Y, Luo H, Huang N, Cheng F, et al. Estrogenic and anti-estrogenic activities of hispolon from Phellinus lonicerinus (Bond.) Bond. et sing. Fitoterapia 2014;95:93–101.
  • Ali NA, Jansen R, Pilgrim H, Liberra K, Lindequist U. Hispolon, a yellow pigment from inonotus hispidus. Phytochemistry 1996;41:927–929.
  • Zan L-F, Qin J-C, Zhang Y-M, Yao Y-H, Bao H-Y, Li X. Antioxidant hispidin derivatives from medicinal mushroom inonotus hispidus. Chem Pharm Bull 2011;59:770–772.
  • Mo S, Wang S, Zhou G, Yang Y, Li Y, Chen X, Shi J. Phelligridins C-F: cytotoxic pyrano[4,3-c][2]benzopyran-1,6-dione and furo[3,2-c]pyran-4-one derivatives from the fungus Phellinus igniarius. J Nat Prod 2004;67:823–828.
  • Chen W, He F-Y, Li Y-Q. The apoptosis effect of hispolon from Phellinus linteus (Berkeley & Curtis) Teng on human epidermoid KB cells. J Ethnopharmacol 2006;105:280–285.
  • Balaji NV, Ramani MV, Viana AG, Sanglard LP, White J, Mulabagal V, et al. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs. Bioorg Med Chem 2015;23:2148–2158.
  • Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. Biotech 2012;2:1–15.
  • Chen W, Zhao Z, Li L, Wu B, Chen S-F, Zhou H, et al. Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med 2008;45:60–72.
  • Guha SN, Moorthy PN, Kishore K, Naik DB, Rao KN. One-electron reduction of thionine studied by pulse radiolysis. Proc Indian Acad Sci (Chem Sci) 1987;99:261–271.
  • Buxton GV, Stuart CR. Re-evaluation of the thiocyanate dosimeter for pulse radiolysis. Faraday Trans 1995;91:279–281.
  • Hodges GR, Young MJ, Paul T, Ingold KU. How should xanthine oxidase generated superoxide yields be measured. Free Radic Biol Med 2000;29:434–441.
  • Barik A, Mishra B, Kunwar A, Kadam RM, Shen L, Dutta S, et al. Comparative study of copper(II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur J Med Chem 2007;42:431–439.
  • Spinks WT, Woods RJ. An introduction to radiation chemistry, 3rd ed. New York: Wiley Interscience; 1990:95.
  • Neta P, Huie RE, Ross AB. Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 1988;17:1027–1284.
  • Shen X, Lind J, Eriksen TE, Merenyi G. Reactivity of the radical. Evidence for a first-order transformation. J Phys Chem 1989;93:553–557.
  • Urbaniak A, Molski M, Szeląg M. Quantum-chemical calculations of the antioxidant properties of trans-p-coumaric acid and trans-sinapinic acid. CMST 2012;18:117–128.
  • Chandra AK, Uchimaru T. The O-H bond dissociation energies of substituted phenols and proton affinities of substituted phenoxide ions: a DFT study. IJMS 2002;3:407–422.
  • Zhang H, Sun Y, Wang X. Substituent effects on the O–H bond dissociation enthalpies and ionization potentials of catechol: a DFT study and its implications in the rational relationship for flavonoid antioxidant. Chem Eur J 2003;9:502–508.
  • Cossi M, Rega N, Scalmani G, Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 2003;24:669–681.
  • Schweigert N, Zehnder AJB, Eggen RIL. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 2001;3:81–91.
  • https://en.wikipedia.org/wiki/Acetylacetone
  • Friaa O, Brault D. Kinetics of the reaction between the antioxidant Trolox and the free radical DPPH in semi-aqueous solution. Org Biomol Chem 2006;4:2417–2423.
  • Wolfenden BS, Willson RL. Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-3(-ethyl benzthiazoline-6-sulphonate). J Chem Soc Perkin Trans 1982; 2:805–812.
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988;88:899–926.
  • Bendary E, Francis RR, Ali HMG, Sarwat MI, El-Hady S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci 2013;58:173–181.
  • Ivanovic-Burmazović I, Filipović MR. Inorganic/bioinorganic reaction mechanism. Adv Inorg Chem 2012; 64:55.
  • Jonsson M. Thermochemical properties of peroxides and peroxyl radicals. J Phys Chem 1996;100:6814–6818.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.