1,204
Views
1
CrossRef citations to date
0
Altmetric
Review Article

COST Action CM1201 “Biomimetic Radical Chemistry”: free radical chemistry successfully meets many disciplines

, , &
Pages S112-S128 | Received 04 Jul 2016, Accepted 12 Oct 2016, Published online: 28 Nov 2016

References

  • Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, et al. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 2016;26:5–28.
  • Buckel W, Golding BT. Radical enzymes. In: Chatgilialoglu C, Studer A, eds. Handbook of radicals in chemistry, biology & materials. New York: Wiley; 2012:ch. 50.
  • Wilkes H, Buckel W, Golding BT, Rabus R. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 2016;26:138–151.
  • Bariotaki A, Kalaitzakis D, Smonou I. Enzymatic reductions for the regio- and stereoselective synthesis of hydroxy-keto esters and dihydroxy esters. Org Lett 2012;14:1792–1795.
  • (a) Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT. Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes. J Mol Microbiol Biotechnol 2016;26:29–44. (b) Seyhan D, Friedrich P, Szaleniec M, Buckel W, Golding BT, Heider JD. Elucidating the stereochemistry of enzymatic benzylsuccinate synthesis with chirally labeled toluene. Angew Chem Int Ed Engl 2016;55:11664–11667.
  • Goncharenko KV, Vit A, Blankenfeldt W, Seebeck FP. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway. Angew Chem Int Ed Engl 2015;54:2821–2824.
  • Goncharenko KV, Seebeck FP. Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Chem Commun 2016;52:1945–1948.
  • Dowling DP, Vey JL, Croft AK, Drennan CL. Structural diversity in the AdoMet radical enzyme superfamily. Biochim Biophys Acta 2012;1824:1178–1195.
  • Dragičević I, Barić D, Kovačević B, Golding BT, Smith DM. Non-enzymatic ribonucleotide reduction in the prebiotic context. Chemistry 2015;21:6132–6143.
  • Eleftheriadis N, Neochoritis CG, Leus NG, van der Wouden PE, Dömling A, Dekker FJ. Rational development of a potent 15-lipoxygenase-1 inhibitor with in vitro and ex vivo anti-inflammatory properties. J Med Chem 2015;58:7850–7862.
  • Wisastra R, Dekker FJ. Inflammation, cancer and oxidative lipoxygenase activity are intimately linked. Cancers (Basel) 2014;6:1500–1521.
  • Faus I, Reinhard A, Rackwitz AS, Wolny JA, Schlage K, Wille H-C, et al. Isoprenoid biosynthesis in pathogenic bacteria: nuclear resonance vibrational spectroscopy provides insight into the unusual [4Fe-4S] cluster of the E. coli LytB/IspH protein. Angew Chem Int Ed Engl 2015;54:12584–12587.
  • Janthawornpong K, Krasutsky S, Chaignon P, Rohmer M, Poulter CD, Seemann M. Inhibition of IspH, a [4Fe-4S]2+ enzyme involved in the biosynthesis of isoprenoids via the methylerythritol phosphate pathway. J Am Chem Soc 2013;135:1816–1822.
  • Krych J, Gebicka L. Catalase is inhibited by flavonoids. Int J Biol Macromol 2013;58:148–153.
  • Krych J, Gebicki JL, Gebicka L. Flavonoid-induced conversion of catalase to its inactive form – compound II. Free Radic Res 2014;48:1334–1341.
  • Neacsu MV, Matei I, Micutz M, Staicu T, Precupas A, Popa VT, et al. Interaction between albumin and pluronic F127 block copolymer revealed by global and local physicochemical profiling. J Phys Chem B 2016;120:4258–4267.
  • Matei I, Ariciu AM, Neacsu MV, Collauto A, Salifoglou A, Ionita G. Cationic spin probe reporting on thermal denaturation and complexation-decomplexation of BSA with SDS. Potential applications in protein purification processes. J Phys Chem B 2014;118:11238–11252.
  • Lojek A, Denev P, Číž M, Vasicek O, Kratchanova M. The effects of biologically active substances in medicinal plants on the metabolic activity of neutrophils. Phytochem Rev 2014;13:499–510.
  • Cadet J, Ravanat J-L, Martinez G, Medeiros M, Di Mascio P. Singlet oxygen oxidation of isolated and cellular DNA: product formation and mechanistic insights. Photochem Photobiol 2006;82:1219–1225.
  • Ravanat J-L, Martinez GR, Medeiros MGH, Di Mascio P, Cadet J. Singlet oxygen oxidation of 2′-deoxyguanosine. Formation and mechanistic insights. Tetrahedron 2016;62:10709–10715.
  • Sheu C, Foote CS. Endoperoxide formation in a guanosine derivative. J Am Chem Soc 1993;115:10446–10447.
  • Dumont E, Gruber R, Bignon E, Morell C, Moreau Y, Monari A, Ravanat J-L. Probing the reactivity of singlet oxygen with purines. Nucleic Acids Res 2015;44:56–62.
  • Dumont E, Grüber R, Bignon E, Morell C, Randa J, Ravanat J-L, Tunon I. Singlet oxygen addition onto guanine: reactivity and structural signature within the B-DNA helix. Chem Eur J 2016;22:12358–12362.
  • Grüber R, Monari A, Dumont E. Stability of the guanine endoperoxide intermediate: a computational challenge for density functional theory. J Phys Chem A 2014;118:11612–11619.
  • Grüber R, Dumont E. DFT investigation of the formation of linear aminols as the first step toward the induction of oxidatively-generated interstrand cross-link DNA lesions. Theor Chem Acc 2015;134:26.
  • Dumont E, Monari A. Interaction of palmatine with DNA: an environmentally controlled phototherapy drug. J Phys Chem B 2015;119:410–419.
  • Dumont E, Monari A. Benzophenone and DNA: evidences for a double insertion mode and its spectral signature. J Phys Chem Lett 2013;4:4119–4124.
  • Gattuso H, Assfeld X, Monari A. Modeling DNA electronic circular dichroism by QM/MM methods and Frenkel Hamiltonian. Theor Chem Acc 2015;134:36.
  • Huix-Rotllant M, Dumont E, Ferré N, Monari A. Photophysics of acetophenone interacting with DNA: why the road to photosensitization is open. Photochem Photobiol 2015;91:323–330.
  • Marazzi M, Mai S, Roca-Sanjuan D, Delcey MG, Lindh R, Gonzalez L, Monari A. Benzophenone ultrafast triplet population: revisiting the kinetic model by surface-hopping dynamics. J Phys Chem Lett 2016;7:622–626.
  • Marazzi M, Wibowo M, Gattuso H, Dumont E, Roca-Sanjuan D, Monari A. Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization. Phys Chem Chem Phys 2016;18:7829–7836.
  • Gattuso H, Spinello A, Terenzi A, Assfeld X, Barone G, Monari A. Circular dichroism of DNA G-quadruplexes: combining modeling and spectroscopy to unravel complex structures. J Phys Chem B 2016;120:3113–3121.
  • Gattuso H, Besancenot V, Grandemange S, Marazzi M, Monari A. From non-covalent binding to irreversible DNA lesions: Nile blue and Nile red as photosensitizing agents. Sci Rep 2016;6:28480.
  • Gattuso H, Dumont E, Marazzi M, Monari A. Two-photon absorption DNA sensitization via solvated electron production: unravelling photochemical pathways by molecular modelling and simulations. Phys Chem Chem Phys 2016;18:18598–18606.
  • Dumont E, Wibowo M, Roca-Sanjuan D, Garavelli M, Assfeld X, Monari A. Resolving the benzophenone DNA-photosensitization mechanism at QM/MM level. J Phys Chem Lett 2015;6:576–580.
  • Bignon E, Gattuso H, Morell C, Dumont E, Monari A. DNA photosensitization by an insider. Photophysics and triplet energy transfer of 5-methyl-2-pyrimidone deoxyribonucleoside. Chem Eur J 2015;21:11509–11516.
  • Dumont E, Monari A. Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Front Chem 2015;3:43.
  • Gattuso H, Duchanois T, Besancenot V, Barbieux C, Assfeld X, Becuwe P, et al. Interaction of iron II complexes with B-DNA. Insights from molecular modeling, spectroscopy, and cellular biology. Front Chem 2015;3:67.
  • Chatgilialoglu C, Ferreri C, Terzidis MA. Purine 5′,8-cyclonucleoside lesions: chemistry and biology. Chem Soc Rev 2011;40:1368–1382.
  • Chatgilialoglu C, Ferreri C, Masi A, Sansone A, Terzidis MA, Tsakos M. A problem solving approach for the diastereoselective synthesis of (5′S)- and (5′R)-5′,8-cyclopurine lesions. Org Chem Front 2014;1:698–702.
  • Capobianco A, Caruso T, Fusco S, Terzidis MA, Masi A, Chatgilialoglu C, Peluso A. The association constant of 5′,8-cyclo-2′-deoxyguanosine with cytidine. Front Chem 2015;3:22.
  • Pieraccini S, Terzidis MA, Baldassarri EJ, Fragneto G, Mariani P, Masiero S, Chatgilialoglu C. A lipophilic “fully-anti” dodecamer from a (5′S)-5′,8-cyclo-2′-deoxyguanosine. Chem Commun 2014;50:10722–10725.
  • Terzidis MA, Chatgilialoglu C. An ameliorative protocol for the quantification of purine 5′,8-cyclo-2′-deoxynucleosides in oxidized DNA. Front Chem 2015;3:47.
  • Terzidis MA, Ferreri C, Chatgilialoglu C. Radiation-induced formation of purine lesions in single and double stranded DNA: revised quantification. Front Chem 2015;3:18.
  • Terzidis MA, Prisecaru A, Molphy Z, Barron N, Randazzo A, Dumont E, et al. Radical-induced purine lesion formation is dependent on DNA helical topology. Free Radical Res 2016; in press. doi: 10.1080/10715762.2016.1244820
  • Chatgilialoglu C, Krokidis MG, Papadopoulos K, Terzidis MA. Purine 5′,8-cyclo-2′-deoxynucleoside lesions in irradiated DNA. Rad Phys Chem 2016;128:74–80.
  • Kropache K, Ding S, Terzidis MA, Masi A, Liu Z, Cai Y, et al. Structural basis for the recognition of diastereomeric 5′,8-cyclo-2′-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Res 2014;42:5020–5032.
  • Cai Y, Kropachev K, Terzidis MA, Masi A, Chatgilialoglu C, Shafirovic V, et al. Differences in the access of lesions to the nucleotide excision repair machinery in nucleosomes. Biochemistry 2015;54:4181–4185.
  • Xu M, Lai Y, Jiang Z, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. A 5′,8-cyclo-2′-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase beta. Nucleic Acids Res 2014;42:13749–13763.
  • Jiang Z, Xu M, Lai Y, Laverde EE, Terzidis MA, Masi A, et al. Bypass of a 5′,8-cyclopurine-2′-deoxynucleoside by DNA polymerase beta during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks. DNA Repair 2015;33:24–34.
  • Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, Sauvaigo S. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. BJR 2014;87:20130715.
  • Cadet J, Ravanat J-L, Taverna-Porro M, Menoni H, Angelov D. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett 2012;327:5–15.
  • Cadet J, Douki T, Ravanat J-L. One-electron oxidation of DNA and inflammation processes. Nat Chem Biol 2006;2:348–349.
  • Perrier S, Hau J, Gasparutto D, Cadet J, Favier A, Ravanat J-L. Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide. J Am Chem Soc 2006;128:5703–5710.
  • Milligan JR, Aguilera JA, Ly A, Tran NQ, Hoang O, Ward JF. Repair of oxidative DNA damage by amino acids. Nucleic Acids Res 2003;31:6258–6263.
  • Milligan JR, Tran NQ, Ly A, Ward JF. Peptide repair of oxidative DNA damage. Biochemistry 2004;43:5102–5108.
  • Silerme S, Bobyk L, Taverna-Porro M, Cuier C, Saint-Pierre C, Ravanat JL. DNA-polyamine crosslinks generated upon one electron oxidation of DNA. Chem Res Toxicol 2014;27:1011–51018.
  • Gomez Mendoza M, Banyasz A, Douki T, Markovitsi D, Ravanat JL. Direct oxidative damage of naked DNA generated upon absorption of UV radiation by nucleobases. J Phys Chem Lett 2016;7:3945–3948.
  • Ravanat JL. Chromatographic methods for the analysis of oxidatively damaged DNA. Free Radic Res 2012;46:479–5491.
  • Capobianco A, Caruso T, D’Ursi AM, Fusco S, Masi A, Scrima M, et al. Delocalized hole domains in guanine-rich DNA oligonucleotides. J Phys Chem B 2015;119:5462–5466.
  • Borrelli R, Capobianco A, Landi A, Peluso A. Vibronic couplings and coherent electron transfer in bridged systems. Phys Chem Chem Phys 2015;17:30937–30945.
  • Nikitaki Z, Nikolov V, Mavragani IV, Mladenov E, Mangelis A, Laskaratou DA, et al. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Rad Res 2016; doi: 10.1080/10715762.2016.1232484.
  • Nikitaki Z, Hellweg CE, Georgakilas AG, Ravanat JL. Stress-induced DNA damage biomarkers: applications and limitations. Front Chem 2015;3:35.
  • Georgakilas AG, Redon CE, Ferguson NF, Kryston TB, Parekh P, Dickey JS, et al. Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Lett 2014;353:248–4257.
  • Pavlopoulou A, Savva GD, Louka M, Bagos PG, Vorgias CE, Michalopoulos I, Georgakilas AG. Unraveling the mechanisms of extreme radioresistance in prokaryotes: lessons from nature. Mutat Res Rev Mutat Res 2016;767:92–4107.
  • Pavlopoulou A, Oktay Y, Vougas K, Louka M, Vorgias CE, Georgakilas AG. Determinants of resistance to chemotherapy and ionizing radiation in breast cancer stem cells. Cancer Lett 2016;380:485–4493.
  • Nikitaki Z, Mavragani IV, Laskaratou DA, Gika V, Moskvin VP, Theofilatos K, et al. Systemic mechanisms and effects of ionizing radiation: a new ‘old’ paradigm of how the bystanders and distant can become the players. Semin Cancer Biol 2016;37:438, 77–95.
  • Pateras IS, Havaki S, Nikitopoulou X, Vougas K, Townsend PA, Panayiotidis MI, et al. The DNA damage response and immune signaling alliance: is it good or bad? Nature decides when and where. Pharmacol Ther 2015;154:36–56.
  • Nikitaki Z, Michalopoulos I, Georgakilas AG. Molecular inhibitors of DNA repair: searching for the ultimate tumor killing weapon. Future Med Chem 2015;7:1543–1558.
  • Georgakilas AG, Pavlopoulou A, Louka M, Nikitaki Z, Vorgias CE, Bagos PG, Michalopoulos I. Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 2015;368:164–172.
  • Bignon E, Gattuso H, Morell C, Dehez F, Georgakilas AG, Monari A, Dumont E. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion. Nucleic Acids Res 2016;44:8588–8599.
  • Gattuso H, Durand E, Bignon E, Morell C, Georgakilas AG, Dumont E, Chipot C, et al. Repair rate of clustered abasic DNA lesions by human endonuclease: molecular bases of sequence specificity. J Phys Chem Lett 2016;7:3760–3765.
  • Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, et al. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015;35:S151–S184.
  • Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, Amin A, et al. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 2015;35:S276–S304.
  • Nikitaki Z, Nikolov V, Mavragani IV, Plante I, Emfietzoglou D, Iliakis G, Georgakilas AG. Non-DSB clustered DNA lesions. Does theory colocalize with the experiment? Rad Phys Chem 2016;128:26–35.
  • Zdrowowicz M, Chomicz L, Miloch J, Wiczk J, Rak J, Kciuk G, Bobrowski K. Reactivity pattern of bromonucleosides induced by 2-hydroxypropyl radicals: photochemical, radiation chemical, and computational studies. J Phys Chem B 2015;119:6545–6554.
  • Westphal K, Wiczk J, Miloch J, Kciuk G, Bobrowski K, Rak J. Irreversible electron attachment-a key to DNA damage by solvated electrons in aqueous solution. Org Biomol Chem 2015;13:10362–10369.
  • Westphal K, Skotnicki K, Bobrowski K, Rak J. Radiation damage to single stranded oligonucleotide trimers labelled with 5-iodopyrimidines. Org Biomol Chem 2016;14:9331–9337.
  • Larragy R, Fitzgerald J, Prisecaru A, McKee V, Leonard P, Kellett A. Protein engineering with artificial chemical nucleases. Chem Commun (Camb) 2015;51:12908–12911.
  • Molphy Z, Prisecaru A, Slator C, Barron N, McCann M, Colleran J, et al. Copper phenanthrene oxidative chemical nucleases. Inorg Chem 2014;53:5392–5404.
  • Molphy Z, Slator C, Chatgilialoglu C, Kellett A. DNA oxidation profiles of copper phenanthrene chemical nucleases. Front Chem 2015;3:28.
  • Slator C, Barron N, Howe O, Kellett A. [Cu(o-phthalate)(phenanthroline)] exhibits unique superoxide-mediated NCI-60 chemotherapeutic action through genomic DNA damage and mitochondrial dysfunction. ACS Chem Biol 2016;11:159–171.
  • Prisecaru A, Molphy Z, Kipping RG, Peterson EJ, Qu Y, Kellett A, Farrell NP. The phosphate clamp: sequence selective nucleic acid binding profiles and conformational induction of endonuclease inhibition by cationic Triplatin complexes. Nucleic Acids Res 2014;42:13474–13487.
  • Ferreri C, Omega 3 fatty acids and bioactive foods: from biotechnology to health promotion. In: Ronald W, ed. Bioactive food as dietary interventions for liver and gastrointestinal disease. London: Academic Press; 2013:401–420.
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972;175:720–731.
  • Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 2005;338:668–676.
  • Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal – a bioactive lipid peroxidation product. Biomolecules 2015;5:2247–2337.
  • Riahi Y, Cohen G, Shamni O, Sasson S. Signaling and cytotoxic functions of 4-hydroxyalkenals. Am J Physiol Endocrinol Metab 2010;299:E879–E886.
  • Cohen G, Riahi Y, Shamni O, Guichardant M, Chatgilialoglu C, Ferreri C, et al. Role of lipid peroxidation and PPAR-δ in amplifying glucose-stimulated insulin secretion. Diabetes 2011;60:2830–2842.
  • Cohen G, Riahi Y, Sunda V, Deplano S, Chatgilialoglu C, Ferreri C, et al. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic Biol Med 2013;65:978–987.
  • Cohen G, Shamni O, Avrahami Y, Cohen O, Broner EC, Filippov-Levy N, et al. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia 2015;58:1333–1343.
  • Jovanovic O, Pashkovskaya AA, Annibal A, Vazdar M, Burchardt N, Sansone A, et al. The molecular mechanism behind reactive aldehyde action on transmembrane translocations of proton and potassium ions. Free Radical Biol Med 2015;89:1067–1076.
  • Lands WE. Metabolism of glycerolipides: a comparison of lecithin and triglyceride synthesis. J Biol Chem 1958;231:883–888.
  • Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, et al. Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1231403.
  • Matera R, Gabbanini S, Berretti S, Amorati R, De Nicola GR, Iori R, Valgimigli L. Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: isolation, structure elucidation and antioxidant activity. Food Chem 2015;166:397–406.
  • Canistro D, Boccia C, Falconi R, Bonamassa B, Valgimigli L, Vivarelli F, et al. Redox-based flagging of the global network of oxidative stress greatly promotes longevity. J Gerontol A Biol Sci Med Sci 2015;70:936–943.
  • Valgimigli L, Sapone A, Canistro D, Broccoli M, Gatta L, Soleti A, Paolini M. Oxidative stress and aging: a non-invasive EPR investigation in human volunteers. Aging Clin Exp Res 2015;27:235–238.
  • Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants. Free Radic Res 2015;49:633–649.
  • Fouret G, Tolika E, Lecomte J, Bomafos B, Aoun M, Murphy MP, et al. The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. BBA Bioenerget 2015;1847:1025–1035.
  • Jankovic A, Ferreri C, Filipovic M, Ivnovic-Burmazovic I, Stancic A, Otasevic V, et al. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in rat diabetic skin. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1232483.
  • Anwar A, Marini M, Abruzzo PM, Bolotta A, Ghezzo A, Visconti P, et al. Quantitation of plasma thiamine, related metabolites and plasma protein damage markers in children with autism spectrum disorders and healthy controls. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1239821.
  • Hanikoglu F, Hanikoglu A, Kucuksayan E, Alisik M, Gocener AA, Erel O, et al. Dynamic thiol/disulphide homeostasis before and after radical prostatectomy in patients with prostate cancer. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1235787.
  • Ferreri C, Costantino C, Landi L, Mulazzani QG, Chatgilialoglu C. The thiyl radical mediated isomerization of cis-monounsaturated fatty acid residues in phospholipids: a novel path of membrane damage? Chem Commun 1999;407–408. doi: 10.1039/A809674K.
  • Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2014;114:255–284.
  • Tartaro Bujak I, Chatgilialoglu C, Ferreri C, Valgimigli L, Amorati R, Mihalievic B. The effect of aromatic amines and phenols in the thiyl-induced reactions of polyunsaturated fatty acids. Rad Phys Chem 2016;124:104–110.
  • Chatgilialoglu C, Ferreri C, Lykakis IN, Mihaljevic B. Biomimetic thiyl radical chemistry by gamma-irradiation of micelles and vesicles containing unsaturated fatty acids. Isr J Chem 2014;54:242–247.
  • Tartaro Bujak I, Mihaljevic B, Ferreri C, Chatgilialoglu C. The influence of antioxidants in the thiyl radical induced lipid peroxidation and geometrical isomerization in micelles of linoleic acid. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1231401.
  • Lykakis IN, Ferreri C, Chatgilialoglu C. Biomimetic chemistry on the protection of cis phospholipids from the thiyl radical isomerization by common antioxidants. Arkivoc 2015;2015:140–153.
  • Sansone A, Melchiorre M, Chatgilialoglu C, Ferreri C. Hexadecenoic fatty acid isomers: a chemical biology approach for human plasma biomarker development. Chem Res Toxicol 2013;26:1703–1709.
  • Sansone A, Tolika E, Louka M, Sunda V, Deplano S, Melchiorre M, et al. Hexadecenoic fatty acid isomers in human blood and their relevance for the obesity lipidomic phenotype. PLoS One 2016;511:e0152378.
  • Mendeluk GR, Cohen MI, Ferreri C, Chatgilialoglu C. Nutrition and reproductive health: sperm versus erythrocyte lipidomic profile and ω-3 intake. J Nutr Metab 2015;Article ID 670526.
  • Bianchi AR, Ferreri C, Ruggiero S, Deplano S, Valentina S, Galloro G, et al. Automodification of PARP and fatty acid-based membrane lipidome as a promising integrated biomarker panel in molecular medicine. Biomarkers Med 2016;10:229–242.
  • Cort A, Ozben T, Sansone A, Barata-Vallejo S, Chatgilialoglu C, Ferreri C. Bleomycin-induced trans lipid formation in cell membranes and in liposome models. Org Biomol Chem 2015;13:1100–1105.
  • Cort A, Ozben T, Melchiorre M, Chatgilialoglu C, Ferreri C, Sansone A. Effects of bleomycin and antioxidants on the fatty acid profile of testicular cancer cell membranes. Biochim Biophys Acta 2016;1858:434–441.
  • Barata-Vallejo S, Ferreri C, Zhang T, Permentier H, Bischoff R, Bobrowski K, Chatgilialoglu C. Radiation chemical studies of Gly-Met-Gly in aqueous solution. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1231402.
  • Lakk-Bogath D, Speier G, Surducan M, Silaghi-Dumitrescu R, Simaan AJ, Faure B, Kaizer J. Comparison of heme and nonheme iron-based 1-aminocyclopropane-1-carboxylic acid oxidase mimics: kinetic, mechanistic and computational studies. RSC Adv 2015;5:2075–2079.
  • Chenneberg L, Baralle A, Daniel M, Fensterbank L, Goddard JP, Ollivier C. Visible light photocatalytic reduction of O-thiocarbamates: development of a tin-free Barton-McCombie deoxygenation reaction. Adv Synth Catal 2014;356:2756–2762.
  • Corcé V, Chamoreau LM, Derat E, Goddard JP, Ollivier C, Fensterbank L. Silicates as latent alkyl radical precursors: visible-light photocatalytic oxidation of hypervalent bis-catecholato silicon compounds. Angew Chem Int Ed Engl 2015;54:11414–11418.
  • Kornarakis I, Lykakis IN, Vordos N, Armatas GS. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate–Ag2S–CdS semiconductors. Nanoscale 2014;6:8694–8703.
  • Kafka F, Holan M, Hidasová D, Pohl R, Císařová I, Klepetářová B, Jahn U. Oxidative catalysis using the stoichiometric oxidant as a reagent: an efficient strategy for single-electron-transfer-induced tandem anion-radical reactions. Angew Chem Int Ed Engl 2014;53:9944–9948.
  • Bagi N, Kaizer J, Speier G. Oxidation of thiols to disulfides by dioxygen catalyzed by a bioinspired organocatalyst. RSC Adv 2015;5:45983–45986.
  • Bors I, Kaizer J, Speier G. Kinetics and mechanism of PPh3 oxygenation with 3O2 catalyzed by a 1,3,2-oxazaphosphole as flavin mimic. RSC Adv 2014;4:16928–16930.
  • Bors I, Kaizer J, Speier G, Giorgi M. Carbon dioxide as a primary oxidant and a C1 building block. RSC Adv 2014;4:45969–45972.
  • Symeonidis TS, Tamiolakis I, Armatas GS, Lykakis IN. Green photocatalytic organic transformations by polyoxometalates vs. mesoporous TiO2 nanoparticles: selective aerobic oxidation of alcohols. Photochem Photobiol Sci 2015;14:563–568.
  • Alvarez-Dorta D, Leon EI, Kennedy AR, Martin A, Perez-Martin I, Suarez E. Easy access to modified cyclodextrins by an intramolecular radical approach. Angew Chem Int Ed Engl 2015;54:3674–3678.
  • Soulard V, Dénès F, Renaud P. Effect of Bronsted Acids on the thiophenol-mediated radical addition-translocation-cyclization process for the preparation of pyrrolidine derivatives. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1223294.
  • Paz NR, Rodriguez-Sosa D, Valdes H, Marticorena R, Melian D, Copano MB, et al. Chemoselective intramolecular functionalization of methyl groups in nonconstrained molecules promoted by N-iodosulfonamides. Org Lett 2015;17:2370–2373.
  • Jagtap PR, Ford L, Deister E, Pohl R, Císařová I, Hodek J, et al. Highly functionalized and potent antiviral cyclopentane derivatives formed by a tandem process consisting of organometallic, transition-metal-catalyzed, and radical reaction steps. Chem Eur J 2014;20:10298–10304.
  • Holan M, Pohl R, Císařová I, Klepetářová B, Jones PG, Jahn U. Highly functionalized cyclopentane derivatives by tandem michael addition/radical cyclization/oxygenation reactions. Chem Eur J 2015;20:9877–9888.
  • Amatov T, Pohl R, Cisařová I, Jahn U. Synthesis of bridged diketopiperazines by using the persistent radical effect and a formal synthesis of bicyclomycin. Angew Chem Int Ed Engl 2015;54:12153–12157.
  • Amatov T, Gebauer M, Pohl R, Cisařová I, Jahn U. Oxidative radical cyclizations of diketopiperazines bearing an amidomalonate unit. Heterointermediate reaction sequences toward the asperparalines and stephacidins. Free Radic Res 2016; http://dx.doi.org/10.1080/10715762.2016.1223295.
  • Gloor CS, Dénès F, Renaud P. Memory of chirality in reactions involving monoradicals. Free Radic Res 2016; https://doi.org/http://dx.doi.org/10.1080/10715762.2016.1232485.