345
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Increased non-protein bound iron in Down syndrome: contribution to lipid peroxidation and cognitive decline

, , , , , , & show all
Pages 1422-1431 | Received 01 Aug 2016, Accepted 25 Oct 2016, Published online: 23 Nov 2016

References

  • Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 2004;5:725–738.
  • Contestabile A, Benfenati F, Gasparini L. Communication breaks – Down: from neurodevelopment defects to cognitive disabilities in Down syndrome. Prog Neurobiol 2010;91:1–22.
  • Asim A, Kumar A, Muthuswamy S, Jain S, Agarwal S. Down syndrome: an insight of the disease. J Biomed Sci 2015;22:41. doi: 10.1186/s12929-015-0138-y.
  • Ramachandran D, Mulle JG, Locke AE, Bean LJ, Rosser TC, Bose P, et al. Contribution of copy-number variation to Down syndrome-associated atrioventricularseptal defects. Genet Med 2015;17:554–560.
  • Harrison CJ, Schwab C. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia. Eur J Med Genet 2016;59:162–165.
  • Portelius E, Soininen H, Andreasson U, Zetterberg H, Persson R, Karlsson G, et al. Exploring Alzheimer molecular pathology in Down’s syndrome cerebrospinal fluid. Neurodegener Dis 2014;14:98–106.
  • Head E, Lott IT, Wilcock DM, Lemere CA. Aging in Down syndrome and the development of alzheimer's disease neuropathology. Curr Alzheimer Res 2016;13:18–29.
  • Lott IR, Head E. Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol Aging 2005;26:383–389.
  • Shapiro BL. The Down syndrome critical region. J Neural Transm Suppl 1999;57:41–60.
  • Millan Sanchez M, Heyn SN, Das D, Moghadam S, Martin KJ, Salehi A. Neurobiological elements of cognitive dysfunction in Down syndrome: exploring the role of APP. Biol Psychiatry 2012;71:403–409.
  • Pallardó FV, Degan P, D'Ischia M, Kelly FJ, Zatterale A, Calzone R, et al. Multiple evidence for an early age pro-oxidant state in down syndrome patients. Biogerontology 2006;7:211–220.
  • Garlet TR, Parisotto EB, de Medeiros GDS, Pereira LCR, Moreira EAM, Dalmarco EM, et al. Systemic oxidative stress in children and teenagers with Down syndrome. Life Sci 2013;93:558–563.
  • Praticò D, Iuliano L, Amerio G, Tang LX, Rokach J, Sabatino G, Violi F. Down’s syndrome is associated with increased 8,12-iso-iPF2alpha-VI levels: evidence for enhanced lipid peroxidation in vivo. Ann Neurol 2000;48:795–798.
  • Campos C, Guzmán R, López-Fernández E, Casado A. Evaluation of urinary biomarkers of oxidative/nitrosative stress in children with Down syndrome. Life Sci 2011;89:655–661.
  • Campos C, Guzmán R, López-Fernández E, Casado A. Evaluation of urinary biomarkers of oxidative/nitrosative stress in adolescents and adults with Down syndrome. Biochim Biophys Acta 2011;1812:760–768.
  • Gulesserian T, Seidl R, Hardmeier R, Cairns N, Lubec G. Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J Investig Med 2001;49:41–46.
  • Pastor MC, Sierra C, Doladé M, Navarro E, Brandi N, Cabré E, et al. Antioxidant enzymes and fatty acid status in erythrocytes of Down's syndrome patients. Clin Chem 1998;44:924–929.
  • Valenti D, Manente GA, Moro L, Marra E, Vacca RA. Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem J 2011;435:679–688.
  • Manna C, Tagliafierro L, Scala I, Granese B, Andria G, Zappia V. The role of iron toxicity in oxidative stress-induced cellular degeneration in down syndrome: protective effects of phenolic antioxidants. Curr Nutr Food Sci 2012;8:2016–2212.
  • Mainous AG 3rd, Knoll ME, Everett CJ, Matheson EM, Hulihan MM, Grant AM. Uric acid as a potential clue to screen for iron overload. J Am Board Fam Med 2011;4:415–421.
  • De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M, Vannuccini L, et al. Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med 2009;47:440–448.
  • De Felice C, Signorini C, Durand T, Oger C, Guy A, Bultel-Poncé V, et al. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J Lipid Res 2011;52:2287–2297.
  • Signorini C, De Felice C, Leoncini S, Giardini A, D’Esposito M, Filosa S, et al. F4-neuroprostanes mediate neurological severity in Rett syndrome. Clin Chim Acta 2011;412:1399–1406.
  • Raven JC, Court JH, Raven J. Coloured progressive matrices. Oxford: Oxford Psychologists Press; 1995.
  • Galano JM, Mas E, Barden A, Mori TA, Signorini C, De Felice C, et al. Isoprostanes and neuroprostanes: total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostaglandins Other Lipid Mediat 2013;107:95–102.
  • Milne GL, Dai Q, Roberts LJ. The isoprostanes – 25 years later. Biochim Biophys Acta 2015;1851:433–445.
  • Van Rollins M, Woltjer RL, Yin H, Morrow JD, Montine TJ. F2-dihomo-isoprostanes arise from free radical attack on adrenic acid. J Lipid Res 2008;49:995–1005.
  • Einfeld SL, Brown R. Down syndrome – new prospects for an ancient disorder. JAMA 2010;303:2525–2526.
  • Dixon NE, Crissman BG, Smith PB, Zimmerman SA, Worley G, Kishnani PS. Prevalence of iron deficiency in children with Down syndrome. J Pediatr 2010;157:967–997.
  • Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. Uric acid and oxidative stress. Curr Pharm Des 2005;11:4145–4151.
  • Campos C, Guzmán R, López-Fernández E, Casado A. Urinary uric acid and antioxidant capacity in children and adults with Down syndrome. Clin Biochem 2010;43:228–233.
  • Kashima A, Higashiyama Y, Kubota M, Kawaguchi C, Takahashi Y, Nishikubo T. Children with Down's syndrome display high rates of hyperuricaemia. Acta Paediatr 2014;103:359–364.
  • Pratico' D. The neurobiology of isoprostanes and Alzheimer’s disease. Biochim Biophys Acta 2010;1801:930–933.
  • Zis P, McHugh P, McQuillin A, Praticò D, Dickinson M, Shende S, et al. Memory decline in Down Syndrome and its relationship to iPF2alpha, a urinary marker of oxidative stress. PLoS ONE 2014;9:e97709. doi: 10.1371/journal.pone.0097709.
  • Powell D, Caban-Holt A, Jicha G, Robertson W, Davis R, Gold BT, et al. Frontal white matter integrity in adults with Down syndrome with and without dementia. Neurobiol Aging 2014;35:1562–61569.
  • Makila-Mabe BG, Kikandau KJ, Sombo TM, Okitundu DL, Mwanza JC, Boivin MJ, et al. Serum 8,12-iso-iPF2α-VI isoprostane marker of oxidative damage and cognition deficits in children with konzo. PLoS One 2014;9:e107191–e107115.
  • Salvador GA, Uranga RM, Giusto NM. Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2010;2011:20101–20109.
  • Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010;84:825–889.
  • Park J, Lee DG, Kim B, Park SJ, Kim JH, Lee SR, et al. Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells. Toxicology 2015;4;337:39–46.
  • Nemtsas P, Arnaoutoglou M, Perifanis V, Koutsouraki E, Orologas A. Neurological complications of beta-thalassemia. Ann Hematol 2015;94:1261–1265.
  • Schupf N, Lee A, Park N, Dang LH, Pang D, Yale A, et al. Candidate genes for Alzheimer’s disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome. Neurobiol Aging 2015;36:2907. doi: 10.1016/j.neurobiolaging.2015.06.020.
  • Zana M, Janka Z, Kálmán J. Oxidative stress: a bridge between Down’s syndrome and Alzheimer’s disease. Neurobiol Aging 2007;28:648–676.
  • Patten DA, Germain M, Kelly MA, Slack RS. Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis 2010;20:357–S367.
  • Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 2012;62:157–169.
  • Strydom A, Dickinson MJ, Shende S, Pratico D, Walker Z. Oxidative stress and cognitive ability in adults with Down syndrome. Prog Neuropsychopharmacol Biol Psychiatry Neuropsychopharmacol Psychiatry 2009;33:76–80.
  • Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: from pathogenesis to biomarkers. Int J Cell Biol 2012;2012:735206.
  • Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem 2006;96:1–13.
  • Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, et al. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta 2015;1852:1428–1441.
  • Yang B, Sun X, Lashuel H, Zhang Y. Reactive oxidative species enhance amyloid toxicity in APP/PS1 mouse neurons. Neurosci Bull 2012;28:233–239.
  • Cenini G, Dowling AL, Beckett TL, Barone E, Mancuso C, Murphy MP, et al. Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome. Biochim Biophys Acta 2012;1822:130–138.
  • Praticò D, Uryu K, Leight S, Trojanoswki JQ, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001;21:4183–4187.
  • Di Domenico F, Coccia R, Cocciolo A, Murphy MP, Cenini G, Head E, et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer’s Disease neuropathology: redox proteomics analysis of human brain. Biochim Biophys Acta 2013;1832:1249–1259.
  • Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem 2010;285:31217–31232.
  • Bandyopadhyay S, Cahill C, Balleidier A, Huang C, Lahiri DK, Huang X, Rogers JT. Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for Down syndrome and Alzheimer’s disease. PLoS One 2013;31:e65978.
  • Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, et al. Challenges associated with metal chelation therapy in Alzheimer's disease. J Alzheimers Dis 2009;17:457–468.
  • Xia N, Liu L. Metallothioneins and synthetic metal chelators as potential therapeutic agents for removal of aberrant metal ions from metal-Aβ species. Mini Rev Med Chem 2014;14:271–281.
  • Dusek P. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 2016;38:81–92.
  • Ward RJ, Dexter DT, Crichton RR. Chelating agents for neurodegenerative diseases. Curr Med Chem 2012;19:2760–2772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.