405
Views
9
CrossRef citations to date
0
Altmetric
Review

Irreversible plasma and muscle protein oxidation and physical exercise

, , , , &
Pages 126-138 | Received 10 Apr 2018, Accepted 24 Oct 2018, Published online: 04 Dec 2018

References

  • Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med. 2002;32(9):790–796.
  • Dalle-Donne I, Giustarini D, Colombo R, et al. Protein carbonylation in human diseases. Trends Mol Med. 2003;9(4):169–176.
  • Tramutola A, Lanzillotta C, Perluigi M, et al. Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull. 2017;133:88–96.
  • Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids. 2003;25(3–4):221–226.
  • Suzuki YJ, Carini M, Butterfield DA. Protein carbonylation. Antioxid Redox Signal. 2010;12(3):323–325.
  • Wong CM, Marcocci L, Liu L, et al. Cell signaling by protein carbonylation and decarbonylation. Antioxid Redox Signal. 2010;12(3):393–404.
  • Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev. 2014;33(2):79–97.
  • Koltai E, Szabo Z, Atalay M, et al. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev. 2010;131(1):21–28.
  • Afzalpour ME, et al. Plasma protein carbonyl responses to anaerobic exercise in female cyclists. Int J Appl Exer Physiol. 2016;5(1):53–58.
  • Lo Presti R, Canino B, Cilluffo P, et al. Protein carbonyl groups in trained subjects before and after a cardiopulmonary test. Clin Hemorheol Microcirc. 2015;59(1):27–35.
  • Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gend Med. 2008;5(3):218–228.
  • Lamprecht M, Greilberger JF, Schwaberger G, et al. Single bouts of exercise affect albumin redox state and carbonyl groups on plasma protein of trained men in a workload-dependent manner. J Appl Physiol. (1985) 2008;104(6):1611–1617 [doi:10.1152/japplphysiol.01325.2007] [PubMed: 18420715].
  • Brocca L, McPhee JS, Longa E, et al. Structure and function of human muscle fibres and muscle proteome in physically active older men. J Physiol. 2017;595(14):4823–4844.
  • Alessio HM, Hagerman AE, Fulkerson BK, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576–1581.
  • Berzosa C, Gómez-Trullén EM, Piedrafita E, et al. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans. Eur J Appl Physiol. 2011;111(6):1127–1133.
  • Michailidis Y, Jamurtas AZ, Nikolaidis MG, et al. Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc. 2007;39(7):1107–1113.
  • Sentürk UK, Gündüz F, Kuru O, et al. Exercise-induced oxidative stress leads hemolysis in sedentary but not trained humans. J Appl Physiol. (1985) 2005;99(4):1434–1441.
  • Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309–317.
  • Mullins AL, van Rosendal SP, Briskey DR, et al. Variability in oxidative stress biomarkers following a maximal exercise test. Biomarkers. 2013;18(5):446–454.
  • Bloomer RJ, Davis PG, Consitt LA, et al. Plasma protein carbonyl response to increasing exercise duration in aerobically trained men and women. Int J Sports Med. 2007;28(1):21–25.
  • Morillas-Ruiz J, Zafrilla P, Almar M, et al. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebo-controlled double-blind study in cyclists. Eur J Appl Physiol. 2005;95(5–6):543–549.
  • Nikolaidis MG, Kyparos A, Dipla K, et al. Exercise as a model to study redox homeostasis in blood: the effect of protocol and sampling point. Biomarkers. 2012;17(1):28–35.
  • Lee J, Goldfarb AH, Rescino MH, et al. Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Med Sci Sports Exerc. 2002;34(3):443–448.
  • Silva LA, Silveira PCL, Pinho CA, et al. N-acetylcysteine supplementation and oxidative damage and inflammatory response after eccentric exercise. Int J Sport Nutr Exerc Metab. 2008;18(4):379–388.
  • Silva LA, Pinho CA, Silveira PC, et al. Vitamin E supplementation decreases muscular and oxidative damage but not inflammatory response induced by eccentric contraction. J Physiol Sci. 2010;60(1):51–57.
  • Bloomer RJ, Goldfarb AH, Wideman L, et al. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J Strength Cond Res. 2005;19(2):276–285.
  • Zembron-Lacny A, Slowinska-Lisowska M, Ziemba A. Integration of the thiol redox status with cytokine response to physical training in professional basketball players. Physiol Res. 2010;59(2):239–245.
  • Radák Z, Ogonovszky H, Dubecz J, et al. Super-marathon race increases serum and urinary nitrotyrosine and carbonyl levels. Eur J Clin Invest. 2003;33(8):726–730.
  • de Lucas RD, Caputo F, Mendes de Souza K, et al. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise. J Sports Sci 2014;32(1):22–30.
  • Stagos D, Goutzourelas N, Bar-Or D, et al. Application of a new oxidation–reduction potential assessment method in strenuous exercise-induced oxidative stress. Redox Rep. 2015;20(4):154–162.
  • Ramos D, Martins EG, Viana-Gomes D, et al. Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise. Appl Physiol Nutr Metab. 2013;38(5):507–511.
  • Radák Z, Kaneko T, Tahara S, et al. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med. 1999;27(1–2):69–74.
  • Bayod S, Del Valle J, Lalanza JF, et al. Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp Gerontol. 2012;47(12):925–935.
  • Silva LA, Bom KF, Tromm CB, et al. Effect of eccentric training on mitochondrial function and oxidative stress in the skeletal muscle of rats. Braz J Med Biol Res. 2013;46(1):14–20.
  • Reznick AZ, Witt E, Matsumoto M, et al. Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats. Biochem Biophys Res Commun. 1992;189(2):801–806.
  • Guidi F, Magherini F, Gamberi T, et al. Plasma protein carbonylation and physical exercise. Mol Biosyst. 2011;7(3):640–650.
  • Carpentieri A, Gamberi T, Modesti A, et al. Profiling carbonylated proteins in heart and skeletal muscle mitochondria from trained and untrained mice. J Proteome Res. 2016;15(10):3666–3678.
  • Gamberi T, et al. Effect of functional fitness on plasma oxidation level in elders: reduction of the plasma oxidants and improvement of the antioxidant barrier. Am J Sports Sci. 2018;6(2):55–64.
  • Hyzewicz J, Tanihata J, Kuraoka M, et al. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction. Free Radic Biol Med. 2015;82:122–136.
  • Magherini F, Abruzzo PM, Puglia M, et al. Proteomic analysis and protein carbonylation profile in trained and untrained rat muscles. J Proteom. 2012;75(3):978–992.
  • Burniston JG. Changes in the rat skeletal muscle proteome induced by moderate-intensity endurance exercise. Biochim Biophys Acta. 2008;1784(7–8):1077–1086.
  • Jacomini AM, Dias DD, Brito JO, et al. Influence of estimated training status on anti and pro-oxidant activity, nitrite concentration, and blood pressure in middle-aged and older women. Front Physiol. 2017;8:122.
  • Radak Z, Zhao Z, Koltai E, et al. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18(10):1208–1246.
  • Alleman RJ, Katunga LA, Nelson MAM, et al. The “Goldilocks Zone” from a redox perspective – adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol. 2014;5:358.
  • Role of ROS and RNS sources in physiological and pathological conditions; 2016. [Online]. Available from: https://www.hindawi.com/journals/omcl/2016/1245049/. Accessed: 29 Jul, 2018.
  • St-Pierre J, Buckingham JA, Roebuck SJ, et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277(47):44784–44790.
  • Gondim FJ, Modolo LV, Campos GER, et al. Neuronal nitric oxide synthase is heterogeneously distributed in equine myofibers and highly expressed in endurance trained horses. Can J Vet Res. 2005;69(1):46–52.
  • Barreiro E. Role of protein carbonylation in skeletal muscle mass loss associated with chronic conditions. Proteomes Rev. 2016;4(2).
  • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7–8):466–472.
  • Muller FL, Liu Y, Van Remmen HV. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279(47):49064–49073.
  • Suski JM, Lebiedzinska M, Bonora M, et al. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 2012;810:183–205.
  • Sgarbi G, Gorini G, Costanzini A, et al. Hypoxia decreases ROS level in human fibroblasts. Int J Biochem Cell Biol. 2017;88:133–144.
  • Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–1276.
  • Judge AR, Dodd SL. Xanthine oxidase and activated neutrophils cause oxidative damage to skeletal muscle after contractile claudication. Am J Physiol Heart Circ Physiol. 2004;286(1):H252–H256.
  • Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5(2):356–377.
  • Roque FR, Briones AM, García-Redondo AB, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168(3):686–703.
  • Oh S, Tanaka K, Warabi E, et al. Exercise reduces inflammation and oxidative stress in obesity-related liver diseases. Med Sci Sports Exerc. 2013;45(12):2214–2222.
  • Korsager Larsen M, Matchkov VV. Hypertension and physical exercise: the role of oxidative stress. Medicina. 2016;52(1):19–27.
  • Ookawara T, Haga S, Ha S, et al. Effects of endurance training on three superoxide dismutase isoenzymes in human plasma. Free Radic Res. 2003;37(7):713–719.
  • Hitomi Y, Watanabe S, Kizaki T, et al. Acute exercise increases expression of extracellular superoxide dismutase in skeletal muscle and the aorta. Redox Rep. 2008;13(5):213–216.
  • Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44(2):126–131.
  • Fransson D, Nielsen TS, Olsson K, et al. Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training. Eur J Appl Physiol. 2018;118(1):111–121.
  • Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med. 2008;44(2):142–152.
  • Mason SA, Morrison D, McConell GK, et al. Muscle redox signalling pathways in exercise. Role of antioxidants. Free Radic Biol Med. 2016;98:29–45.
  • Brooks SV, Vasilaki A, Larkin LM, et al. Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kappaB activation. J Physiol. 2008;586(16):3979–3990.
  • Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol. 2009;296(1):C116–C123.
  • Brandt N, Dethlefsen MM, Bangsbo J, et al. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. PLOS ONE. 2017;12(10):e0185993.
  • Thirupathi A, de Souza CT. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J Physiol Biochem. 2017;73(4):487–494.
  • Huang CC, Wang T, Tung YT, et al. Effect of exercise training on skeletal muscle SIRT1 and PGC-1α expression levels in rats of different age. Int J Med Sci. 2016;13(4):260–270.
  • Liao ZY, Chen JL, Xiao MH, et al. The effect of exercise, resveratrol or their combination on sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway. Exp Gerontol. 2017;98:177–183.
  • Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502 [doi:10.1016/j.jsams.2009.09.008] [PubMed: 20005170].
  • Wadley AJ, Turner JE, Aldred S. Factors influencing post-exercise plasma protein carbonyl concentration. Free Radic Res. 2016;50(4):375–384.
  • Falone S, Mirabilio A, Pennelli A, et al. Differential impact of acute bout of exercise on redox- and oxidative damage-related profiles between untrained subjects and amateur runners. Physiol Res. 2010;59(6):953–961.
  • Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise – the role of reactive oxygen species. Front Biosci. 2007;12:4826–4838.
  • Ferraro E, Giammarioli AM, Chiandotto S, et al. Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy. Antioxid Redox Signal. 2014;21(1):154–176.
  • Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 2012;3:142.
  • Amm I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin–proteasome system. Biochim Biophys Acta. 2014;1843(1):182–196.
  • Bohovych I, Chan SSL, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal. 2015;22(12):977–994.
  • Nyström T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 2005;24(7):1311–1317.
  • Jung T, Catalgol B, Grune T. The proteasomal system. Mol Aspects Med. 2009;30(4):191–296.
  • Kastle M, Grune T. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. Curr Pharm Des. 2011;17(36):4007–4022.
  • Kästle M, Grune T. Interactions of the proteasomal system with chaperones: protein triage and protein quality control. Prog Mol Biol Transl Sci. 2012;109:113–160.
  • Jung T, Höhn A, Grune T. The proteasome and the degradation of oxidized proteins: part II – protein oxidation and proteasomal degradation. Redox Biol 2014;2:99–104.
  • Zhao Y, Zhang CF, Rossiter H, et al. Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. J Invest Dermatol. 2013;133(6):1629–1637.
  • Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–388.
  • Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol. 2017;34:1–6.
  • Can B, Kara O, Kizilarslanoglu MC, et al. Serum markers of inflammation and oxidative stress in sarcopenia. Aging Clin Exp Res. 2017;29(4):745–752.
  • Murphy ME, Kehrer JP. Oxidative stress and muscular dystrophy. Chem Biol Interact. 1989;69(2–3):101–173.
  • Smakowska E, Czarna M, Janska H. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion. 2014;19(B):245–251.
  • Voos W. Chaperone–protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta. 2013;1833(2):388–399.
  • Bota DA, Davies KJA. Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion. 2001;1(1):33–49.
  • Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal. 2011;14(10):1939–1951.
  • Himmelfarb J, McMonagle E. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int. 2001;60(1):358–363.
  • Wong CM, Bansal G, Marcocci L, et al. Proposed role of primary protein carbonylation in cell signaling. Redox Rep. 2012;17(2):90–94.
  • Wong CM, Cheema AK, Zhang L, et al. Protein carbonylation as a novel mechanism in redox signaling. Circ Res. 2008;102(3):310–318.
  • Suzuki YJ. Mechanism and functions of protein decarbonylation. In: Protein carbonylation. Wiley-Blackwell; 2017. p. 97–109.
  • Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016;44(D1):D1251–D1257.
  • Phung CD, Ezieme JA, Turrens JF. Hydrogen peroxide metabolism in skeletal muscle mitochondria. Arch Biochem Biophys. 1994;315(2):479–482.
  • Radi R, Turrens JF, Chang LY, et al. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991;266(32):22028–22034.
  • Fedorova M, Kuleva N, Hoffmann R. Identification, quantification, and functional aspects of skeletal muscle protein-carbonylation in vivo during acute oxidative stress. J Proteome Res. 2010;9(5):2516–2526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.