1,105
Views
55
CrossRef citations to date
0
Altmetric
Review

Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases

ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 139-149 | Received 17 Oct 2018, Accepted 14 Nov 2018, Published online: 26 Dec 2018

References

  • Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999;260(1):273–279. [doi:1006/bbrc.1999.0897] [PubMed: 10381378].
  • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793–798. [doi:1006/bbrc.2000.3000] [PubMed: 10873683].
  • Becatti M, Taddei N, Cecchi C, et al. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes. Cell Mol Life Sci. 2012;69(13):2245–2260. [doi:1007/s00018-012-0925-5] [PubMed: 22311064].
  • Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25(3):138–145. [doi:1016/j.tem.2013.12.001] [PubMed: 24388149] [PubMed Central: PMC3943707].
  • Donato AJ, Magerko KA, Lawson BR, et al. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol. 2011;589(18):4545–4554. [doi:1113/jphysiol.2011.211219] [PubMed: 21746786] [PubMed Central: PMC3208223].
  • Verdin E, Hirschey MD, Finley LW, et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35(12):669–675. [doi:1016/j.tibs.2010.07.003] [PubMed: 20863707] [PubMed Central: PMC2992946].
  • Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85(2):258–263. [doi:1016/j.ygeno.2004.11.003] [PubMed: 15676284].
  • Brown KD, Maqsood S, Huang JY, et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 2014;20(6):1059–1068. [doi:1016/j.cmet.2014.11.003] [PubMed: 25470550] [PubMed Central: PMC4940130].
  • Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807–8814. [doi:1128/MCB.01636-07] [PubMed: 17923681] [PubMed Central: PMC2169418].
  • Hebert AS, Dittenhafer-Reed KE, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell. 2013;49(1):186–199. [doi:1016/j.molcel.2012.10.024] [PubMed: 23201123] [PubMed Central: PMC3704155].
  • Tao R, Coleman MC, Pennington JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010;40(6):893–904. [doi:1016/j.molcel.2010.12.013] [PubMed: 21172655] [PubMed Central: PMC3266626].
  • Zeng Z, Yang Y, Dai X, et al. Polydatin ameliorates injury to the small intestine induced by hemorrhagic shock via SIRT3 activation-mediated mitochondrial protection. Expert Opin Ther Targets. 2016;20(6):645–652. [doi:1080/14728222.2016.1177023] [PubMed: 27067422].
  • Alhazzazi TY, Kamarajan P, Verdin E, et al. SIRT3 and cancer: tumor promoter or suppressor? Biochim biophys acta. 2011;1816(1):80–88. [doi:1016/j.bbcan.2011.04.004] [PubMed: 21586315] [PubMed Central: PMC3129516].
  • Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010;5(7):e11707. [doi:1371/journal.pone.0011707] [PubMed: 20661474] [PubMed Central: PMC2908542].
  • Freitas M, Rodrigues AR, Tomada N, et al. Effects of aging and cardiovascular disease risk factors on the expression of sirtuins in the human corpus cavernosum. J Sex Med. 2015;12(11):2141–2152. [doi:1111/jsm.13035] [PubMed: 26556180].
  • Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol. 2004;555(1):1–13. [doi:1113/jphysiol.2003.055095] [PubMed: 14660709] [PubMed Central: PMC1664831].
  • Liu L, Nam M, Fan W, et al. Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation. J Clin Invest. 2014;124(2):768–784. [doi:1172/JCI69413] [PubMed: 24430182] [PubMed Central: PMC4381729].
  • Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10):4623–4635. [doi:1091/mbc.E05-01-0033] [PubMed: 16079181] [PubMed Central: PMC1237069].
  • Schwer B, North BJ, Frye RA, et al. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002;158(4):647–657. [doi:1083/jcb.200205057] [PubMed: 12186850] [PubMed Central: PMC2174009].
  • He W, Newman JC, Wang MZ, et al. Mitochondrial sirtuins: regulators of protein acylation and metabolism. Trends Endocrinol Metab. 2012;23(9):467–476. [doi:1016/j.tem.2012.07.004] [PubMed: 22902903].
  • Schwer B, Bunkenborg J, Verdin RO, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A. 2006;103(27):10224–10229. [doi:1073/pnas.0603968103] [PubMed: 16788062] [PubMed Central: PMC1502439].
  • Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007;21(8):920–928. [doi:1101/gad.1527307] [PubMed: 17437997] [PubMed Central: PMC1847710].
  • Osborne B, Bentley NL, Montgomery MK, et al. The role of mitochondrial sirtuins in health and disease. Free Radic Biol Med. 2016;100:164–174. [doi:1016/j.freeradbiomed.2016.04.197] [PubMed: 27164052].
  • Bao X, Wang Y, Li X, et al. Identification of “erasers” for lysine crotonylated histone marks using a chemical proteomics approach. eLife. 2014;3. [doi:7554/eLife.02999] [PubMed: 25369635] [PubMed Central: PMC4358366].
  • Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10(12):M111.012658 Identification of “erasers” for lysine crotonylated histone marks using a chemical proteomics approach [doi:1074/mcp.M111.012658] [PubMed: 21908771].
  • Iwahara T, Bonasio R, Narendra V, et al. SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol. 2012;32(24):5022–5034. [doi:1128/MCB.00822-12] [PubMed: 23045395] [PubMed Central: PMC3510539].
  • Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464(7285):121–125. [doi:1038/nature08778] [PubMed: 20203611] [PubMed Central: PMC2841477].
  • Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008;382(3):790–801. [doi:1016/j.jmb.2008.07.048] [PubMed: 18680753].
  • Palacios OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging. 2009;1(9):771–783. [doi:18632/aging.100075] [PubMed: 20157566] [PubMed Central: PMC2815736].
  • Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging. 2010;2(12):914–923. [doi:18632/aging.100252] [PubMed: 21212461] [PubMed Central: PMC3034180].
  • Sack MN. Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am J Physiol Heart Circ Physiol. 2011;301(6):H2191–H2197. [doi:1152/ajpheart.00199.2011] [PubMed: 21984547] [PubMed Central: PMC3233806].
  • Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. [doi:1042/BJ20110162] [PubMed: 21726199] [PubMed Central: PMC3076726].
  • Pillai VB, Sundaresan NR, Kim G, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010;285(5):3133–3144. [doi:1074/jbc.M109.077271] [PubMed: 19940131] [PubMed Central: PMC2823454].
  • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447–14452. [doi:1073/pnas.0803790105] [PubMed: 18794531] [PubMed Central: PMC2567183].
  • Chen T, Liu J, Li N, et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS One. 2015;10(3):e0118909. [doi:1371/journal.pone.0118909] [PubMed: 25748450] [PubMed Central: PMC4351969].
  • Cimen H, Han MJ, Yang Y, et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry. 2010;49(2):304–311. [doi:1021/bi901627u] [PubMed: 20000467] [PubMed Central: PMC2826167].
  • De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–663. [doi:1016/j.cell.2013.06.037] [PubMed: 23911327].
  • He X, Zeng H, Chen JX. Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recovery post myocardial ischemia. Int J Cardiol. 2016;215:349–357. [doi:1016/j.ijcard.2016.04.092] [PubMed: 27128560] [PubMed Central: PMC4890543].
  • He X, Zeng H, Chen ST, et al. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol. 2017;112:104–113. [doi:1016/j.yjmcc.2017.09.007] [PubMed: 28935506] [PubMed Central: PMC5647246].
  • Lanza IR, Nair KS. Mitochondrial function as a determinant of life span. Pflugers Arch. 2010;459(2):277–289. [doi:1007/s00424-009-0724-5] [PubMed: 19756719] [PubMed Central: PMC2801852].
  • Chen Y, Zhang J, Lin Y, et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011;12(6):534–541. [doi:1038/embor.2011.65] [PubMed: 21566644] [PubMed Central: PMC3128277].
  • de Keizer PL, Burgering BM, Dansen TB. Forkhead box o as a sensor, mediator, and regulator of redox signaling. Antioxid Redox Signal. 2011;14(6):1093–1106. [doi:1089/ars.2010.3403] [PubMed: 20626320].
  • Quinlan CL, Orr AL, Perevoshchikova IV, et al. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem. 2012;287(32):27255–27264. [doi:1074/jbc.M112.374629] [PubMed: 22689576] [PubMed Central: PMC3411067].
  • Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119(9):2758–2771. [doi:1172/JCI39162] [PubMed: 19652361] [PubMed Central: PMC2735933].
  • Qiu X, Brown K, Hirschey MD, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12(6):662–667. [doi:1016/j.cmet.2010.11.015] [PubMed: 21109198].
  • Tan WQ, Wang K, Lv DY, et al. Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. J Biol Chem. 2008;283(44):29730–29739. [doi:1074/jbc.M805514200] [PubMed: 18772130] [PubMed Central: PMC2662055].
  • Rardin MJ, Newman JC, Held JM, et alLabel. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A. 2013;110(16):6601–6606. [doi:1073/pnas.1302961110] [PubMed: 23576753].
  • Mathieu L, Lopes Costa AL, Le Bachelier C, et al. Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: involvement of SIRT3. Free Radic Biol Med. 2016;96:190–198. [doi:1016/j.freeradbiomed.2016.04.027] [PubMed: 27126960].
  • Finley LW, Haas W, Desquiret-Dumas V, et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One. 2011;6(8):e23295. [doi:1371/journal.pone.0023295] [PubMed: 21858060] [PubMed Central: PMC3157345].
  • Bell EL, Emerling BM, Ricoult SJ, et al. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene. 2011;30(26):2986–2996. [doi:1038/onc.2011.37] [PubMed: 21358671] [PubMed Central: PMC3134877].
  • Di Lisa F, Bernardi P. A CaPful of mechanisms regulating the mitochondrial permeability transition. J Mol Cell Cardiol. 2009;46(6):775–780. [doi:1016/j.yjmcc.2009.03.006] [PubMed: 19303419].
  • Gutiérrez-Aguilar M, Baines CP. Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. Biochim biophys acta. 2015;1850(10):2041–2047. [doi:1016/j.bbagen.2014.11.009] [PubMed: 25445707] [PubMed Central: PMC4430462].
  • Bochaton T, Crola-Da-Silva C, Pillot B, et al. Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D. J Mol Cell Cardiol. 2015;84:61–69. [doi:1016/j.yjmcc.2015.03.017] [PubMed: 25871830].
  • Ong SB, Hall AR, Hausenloy DJ. Mitochondrial dynamics in cardiovascular health and disease. Antioxid Redox Signal. 2013;19(4):400–414. [doi:1089/ars.2012.4777] [PubMed: 22793879] [PubMed Central: PMC3699895].
  • Guedes-Dias P, Oliveira JM. Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim biophys acta. 2013;1832(8):1345–1359. [doi:1016/j.bbadis.2013.04.005] [PubMed: 23579074].
  • Samant SA, Zhang HJ, Hong Z, et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014;34(5):807–819. [doi:1128/MCB.01483-13] [PubMed: 24344202] [PubMed Central: PMC4023816].
  • Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222–234. [doi:1016/j.freeradbiomed.2013.05.002] [PubMed: 23665396].
  • Meng G, Liu J, Liu S, et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol. 2018;175(8):1126–1145. [doi:1111/bph.13861] [PubMed: 28503736] [PubMed Central: PMC5866985].
  • Brunner H, Cockcroft JR, Deanfield J, et al. Endothelial function and dysfunction. part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23(2):233–246. [doi:1097/00004872-200502000-00001] [PubMed: 15662207].
  • Christensen HM, Schou M, Goetze JP, et al. Body mass index in chronic heart failure: association with biomarkers of neurohormonal activation, inflammation and endothelial dysfunction. BMC Cardiovasc Disord. 2013;13:80. [doi:1186/1471-2261-13-80] [PubMed: 24083942] [PubMed Central: PMC3850723].
  • Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res. 2012;110(8):1109–1124. [doi:1161/CIRCRESAHA.111.246140] [PubMed: 22499901] [PubMed Central: PMC3867977].
  • Ikeda Y, Shirakabe A, Brady C, et al. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. J Mol Cell Cardiol. 2015;78:116–122. [doi:1016/j.yjmcc.2014.09.019] [PubMed: 25305175] [PubMed Central: PMC4268018].
  • Grillon JM, Johnson KR, Kotlo K, et al. Non-histone lysine acetylated proteins in heart failure. Biochim biophys acta. 2012;1822(4):607–614. [doi:1016/j.bbadis.2011.11.016] [PubMed: 22155497] [PubMed Central: PMC3684243].
  • Yue Z, Ma Y, You J, et al. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Exp Cell Res. 2016;347(2):261–273. [doi:1016/j.yexcr.2016.07.006] [PubMed: 27423420].
  • Ikeda Y, Sato K, Pimentel DR, et al. Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J Biol Chem. 2009;284(51):35839–35849. [doi:1074/jbc.M109.057273] [PubMed: 19828446] [PubMed Central: PMC2791013].
  • Oka T, Akazawa H, Naito AT, et al. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114(3):565–571. [doi:1161/CIRCRESAHA.114.300507] [PubMed: 24481846].
  • Wei T, Huang G, Gao J, et al. Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. J Am Heart Assoc. 2017;6(8). [doi:1161/JAHA.117.006114] [PubMed: 28862956] [PubMed Central: PMC5586452].
  • Klishadi MS, Zarei F, Hejazian SH, et al. Losartan protects the heart against ischemia reperfusion injury: sirtuin3 involvement. J Pharm Pharm Sci. 2015;18(1):112–123. [doi:18433/J3XG7T] [PubMed: 25877446].
  • Koentges C, Pfeil K, Meyer-Steenbuck M, et al. Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. Can J Physiol Pharmacol. 2016;94(1):72–80. [doi:1139/cjpp-2015-0152] [PubMed: 26524632].
  • Zhai M, Li B, Duan W, et al. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res. 2017;63(2). [doi:1111/jpi.12419] [PubMed: 28500761].
  • Yu L, Gong B, Duan W, et al. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1alpha-SIRT3 signaling. Sci Rep. 2017;7:41337. [doi:10.1038/srep41337] [PubMed: 28120943] [PubMed Central: PMC5264601].
  • Porter GA, Urciuoli WR, Brookes PS, et al. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol. 2014;306(12):H1602–H1609. [doi:1152/ajpheart.00027.2014] [PubMed: 24748594] [PubMed Central: PMC4059981].
  • Montezano AC, Dulak-Lis M, Tsiropoulou S, et al. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015;31(5):631–641. [doi:1016/j.cjca.2015.02.008] [PubMed: 25936489].
  • John S, Schmieder RE. Impaired endothelial function in arterial hypertension and hypercholesterolemia: potential mechanisms and differences. J Hypertens. 2000;18(4):363–374. [doi:1097/00004872-200018040-00002] [PubMed: 10779084].
  • Liu H, Chen T, Li N, et al. Role of SIRT3 in angiotensin II-induced human umbilical vein endothelial cells dysfunction. BMC Cardiovasc Disord. 2015;15:81. [doi:10.1186/s12872-015-0075-4] [PubMed: 26223796] [PubMed Central: PMC4520206].
  • Dikalova AE, Itani HA, Nazarewicz RR, et al. Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res. 2017;121(5):564–574. [doi:1161/CIRCRESAHA.117.310933] [PubMed: 28684630] [PubMed Central: PMC5562527].
  • Wong BW, Meredith A, Lin D, et al. The biological role of inflammation in atherosclerosis. Can J Cardiol. 2012;28(6):631–641. [doi:1016/j.cjca.2012.06.023] [PubMed: 22985787].
  • Winnik S, Gaul DS, Siciliani G, et al. Mild endothelial dysfunction in Sirt3 knockout mice fed a high-cholesterol diet: protective role of a novel C/EBP-beta-dependent feedback regulation of SOD2. Basic Res Cardiol. 2016;111(3):33. [doi:1007/s00395-016-0552-7] [PubMed: 27071400] [PubMed Central: PMC4829622].
  • Zhou X, Chen M, Zeng X, et al. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis. 2014;5:e1576. [doi:1038/cddis.2014.530] [PubMed: 25522270] [PubMed Central: PMC4454164].
  • Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–1584. [doi:1056/NEJMoa1109400] [PubMed: 23614584] [PubMed Central: PMC3701945].
  • Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. [doi:1038/nature09922] [PubMed: 21475195] [PubMed Central: PMC3086762].
  • Chen ML, Zhu XH, Ran L, et al. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc. 2017;6(9). [doi:1161/JAHA.117.006347] [PubMed: 28871042] [PubMed Central: PMC5634285].
  • Karnewar S, Vasamsetti SB, Gopoju R, et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep. 2016;6:24108. [doi:1038/srep24108] [PubMed: 27063143] [PubMed Central: PMC4827087].
  • Winnik S, Gaul DS, Preitner F, et al. Deletion of Sirt3 does not affect atherosclerosis but accelerates weight gain and impairs rapid metabolic adaptation in LDL receptor knockout mice: implications for cardiovascular risk factor development. Basic Res Cardiol. 2014;109(1):399. [doi:1007/s00395-013-0399-0] [PubMed: 24370889] [PubMed Central: PMC3898152].
  • Marzetti E, Csiszar A, Dutta D, et al. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol. 2013;305(4):H459–H476. [doi:1152/ajpheart.00936.2012] [PubMed: 23748424] [PubMed Central: PMC3891249].
  • Chen T, Li J, Liu J, et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am J Physiol Heart Circ Physiol. 2015;308(5):H424–H434. [doi:1152/ajpheart.00454.2014] [PubMed: 25527776].
  • Pillai VB, Kanwal A, Fang YH, et al. Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget. 2017;8(21):34082–34098. [doi:18632/oncotarget.16133] [PubMed: 28423723] [PubMed Central: PMC5470953].
  • Zhang M, Zhao Z, Shen M, et al. Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3. Biochim Biophys Acta Mol Basis Dis. 2017;1863(8):1962–1972. [doi:1016/j.bbadis.2016.09.003] [PubMed: 27613967].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.