427
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Insulin resistance and diabetes in hyperthyroidism: a possible role for oxygen and nitrogen reactive species

, , &
Pages 248-268 | Received 21 Jun 2018, Accepted 28 Feb 2019, Published online: 25 Mar 2019

References

  • Day C. Metabolic syndrome, or what you will: definitions and epidemiology. Diab Vasc Dis Res. 2007;4(1):32–38.
  • Keller U. From obesity to diabetes. Int J Vitam Nutr Res. 2006;76(4):172–177.
  • Amati F, Dubé JJ, Coen PM, et al. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care. 2009;32(8):1547–1549.
  • Nestler JE, McClanahan MA. Diabetes and adrenal disease. Baillieres Clin Endocrinol Metab. 1992;6(4):829–847.
  • Wang C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J Diabetes Res. 2013;2013:390534.
  • Rohdenburg GL. Thyroid diabetes. Endocrinology. 1920;4(1):63–70.
  • Wajchenberg BL, Cesar FP, Leme CE, et al. Carbohydrate metabolism in thyrotoxicosis: studies on insulin secretion before and after remission from the hyperthyroid state. Horm Metab Res. 1978;10(4):294–299.
  • Lenzen S. Dose–response studies on the inhibitory effect of thyroid hormones on insulin secretion in the rat. Metabolism. 1978;27(1):81–88.
  • Marecek RL, Feldman JM. Effect of hyperthyroidism on insulin and glucose dynamics in rabbits. Endocrinology. 1973;92(6):1604–1611.
  • Upadya U, Suma M, Srinath K, et al. Effect of insulin resistance in assessing the clinical outcome of clinical and subclinical hypothyroid patients. J Clin Diagn Res JCDR. 2015;9:OC01–OC04.
  • Maratou E, Hadjidakis DJ, Peppa M, et al. Studies of insulin resistance in patients with clinical and subclinical hyperthyroidism. Eur J Endocrinol. 2010;163(4):625–630.
  • Rezzonico J, Niepomniszcze H, Rezzonico M, et al. The association of insulin resistance with subclinical thyrotoxicosis. Thyroid. 2011;21(9):945–949.
  • Handisurya A, Pacini G, Tura A, et al. Effects of T4 replacement therapy on glucose metabolism in subjects with subclinical (SH) and overt hypothyroidism (OH). Clin Endocrinol (Oxf). 2008;69(6):963–969.
  • Dessein PH, Joffe BI, Stanwix AE. Subclinical hypothyroidism is associated with insulin resistance in rheumatoid arthritis. Thyroid. 2004;14(6):443–446.
  • Feely J, Isles TE. Screening for thyroid dysfunction in diabetics. Br Med J. 1979;1(6179):1678.
  • Gray RS, Irvine WJ, Clarke BF. Screening for thyroid dysfunction in diabetics. Br Med J. 1979;2(6202):1439.
  • Kim SR, Tull ES, Talbott EO, et al. A hypothesis of synergism: the interrelationship of T3 and insulin to disturbances in metabolic homeostasis. Med Hypotheses. 2002;59(6):660–666.
  • Santini F, Marzullo P, Rotondi M, et al. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol. 2014;171(4):R137–R152.
  • Sinha RA, Singh BK, Yen PM. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol Metab. 2014;25(10):538–545.
  • Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol. 2018;236(1):R57–R68.
  • Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–382.
  • Qaid MM, Abdelrahman MM. Role of insulin and other related hormones in energy metabolism – A review. Cogent Food Agric. 2016;2. https://doi.org/10.1080/23311932.2016.1267691
  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.
  • Fayard E, Tintignac LA, Baudry A, et al. Protein kinase B/Akt at a glance. J Cell Sci. 2005;118(24):5675–5678.
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–1274.
  • Burgess SC. Regulation of glucose metabolism in the liver. In: de Fronzo RA, Ferrannini E, Zimmet P, et al., editors. International textbook of diabetes mellitus. New York, USA: John Wiley & Sons, Inc; 2015.
  • Taniguchi CM, Kondo T, Sajan M, et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ. Cell Metab. 2006;3(5):343–353.
  • Lu M, Wan M, Leavens KF, et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and FoxO1. Nat Med. 2012;18(3):388–395.
  • Holm C, Osterlund T, Laurell H, et al. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr. 2000;20:365–393.
  • Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008;456(7219):269–273.
  • Ader M, Bergman RN. Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am J Physiol. 1990;258(6 Pt 1):E1020–E1032.
  • Perry RJ, Camporez JG, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745–758.
  • Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2003;284(4):E671–E678.
  • Bandyopadhyay G, Standaert ML, Galloway L, et al. Evidence for involvement of protein kinase C (PKC)-ζ and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology. 1997;138(11):4721–4731.
  • Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283(5407):1544–1548.
  • Wijesekara N, Konrad D, Eweida M, et al. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol. 2005;25(3):1135–1145.
  • Chen-Zion M, Bassukevitz Y, Beitner R. Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, mitochondrial hexokinase, glucose 1,6-bisphosphate and fructose 2,6-bisphosphate levels, and the antagonistic action of calmodulin inhibitors, in diaphragm muscle. Int J Biochem. 1992;24(10):1661–1667.
  • Vogt C, Yki-Jarvinen H, Iozzo P, et al. Effects of insulin on subcellular localization of hexokinase II in human skeletal muscle in vivo. J Clin Endocrinol Metab. 1998;83(1):230–234.
  • Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 2005;65(22):10545–10554.
  • Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378(6559):785–789.
  • Lawrence JC, Roach PJ. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes. 1997;46(4):541–547.
  • Eldar-Finkelman H, Schreyer SA, Shinohara MM, et al. Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes. 1999;48(8):1662–1666.
  • Dokken BB, Saengsirisuwan V, Kim JS, et al. Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3. Am J Physiol Endocrinol Metab. 2008;294(3):E615–E621.
  • Nikoulina SE, Ciaraldi TP, Mudaliar S, et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes. 2000;49(2):263–271.
  • Ragolia L, Begum N. Protein phosphatase-1 and insulin action. Mol Cell Biochem. 1998;182(1–2):49–58.
  • DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–194.
  • Lark DS, Fisher-Wellman KH, Neufer PD. High-fat load: mechanism(s) of insulin resistance in skeletal muscle. Int J Obes. 2012;2(S2):S31–S36.
  • Zierath JR, Krook A, Wallberg-Henriksson H. Insulin action and insulin resistance in human skeletal muscle. Diabetologia. 2000;43(7):821–835.
  • Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med. 2000;6(8):924–928.
  • Brüning JC, Michael MD, Winnay JN, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2(5):559–569.
  • Goodyear LJ, Giorgino F, Sherman LA, et al. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest. 1995;95(5):2195–2204.
  • Björnholm M, Kawano Y, Lehtihet M, et al. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes. 1997;46(3):524–527.
  • Paz K, Hemi R, LeRoith D, et al. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272(47):29911–29918.
  • Gao ZG, Hwang D, Bataille F, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J Biol Chem. 2002;277(50):48115–48121.
  • Aguirre V, Uchida T, Yenush L, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047–9054.
  • Ozes ON, Akca H, Mayo LD, et al. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci U S A. 2001;98(8):4640–4645.
  • Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230–50236.
  • de Alvaro C, Teruel T, Hernandez R, et al. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J Biol Chem. 2004;279(17):17070–17078.
  • Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171–176.
  • Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab. 2002;283(1):E1–E11.
  • Somwar R, Perreault M, Kapur S, et al. Activation of p38 mitogen-activated protein kinase α and β by insulin and contraction in rat skeletal muscle: potential role in the stimulation of glucose transport. Diabetes. 2000;49(11):1794–1800.
  • Leng Y, Steiler TL, Zierath JR. Effects of insulin, contraction, and phorbol esters on mitogen-activated protein kinase signaling in skeletal muscle from lean and ob/ob mice. Diabetes. 2004;53(6):1436–1444.
  • Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48(6):1253–1262.
  • Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol. 2017;234(3):R159–R181.
  • Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol. 2017;233(1):R15–R42.
  • Halliwell B, Gutteridge JMC Free radicals in biology and medicine. Oxford, UK: Oxford University Press; 2015.
  • Di Meo S, Reed TT, Venditti P, et al. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049.
  • Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–999.
  • Kalupahana NS, Moustaid-Moussa N. The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev. 2012;13(2):136–149.
  • Wei Y, Sowers JR, Nistala R, et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281(46):35137–35146.
  • Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med. 2016;98:18–28.
  • Den Hartigh LJ, Omer M, Goodspeed L, et al. Adipocyte-specific deficiency of NADPH oxidase 4 delays the onset of insulin resistance and attenuates adipose tissue Inflammation in obesity. Arterioscler Thromb Vasc Biol. 2017;37(3):466–475.
  • Gao D, Nong S, Huang X, et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J Biol Chem. 2010;285(39):29965–29973.
  • Gao L, Mann GE. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res. 2009;82(1):9–20.
  • Balteau M, Tajeddine N, de Meester C, et al. NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1. Cardiovasc Res. 2011;92(2):237–246.
  • Li Y, Mouche S, Sajic T, et al. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes. 2012;36(12):1503–1513.
  • Loh K, Deng H, Fukushima A, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10(4):260–272.
  • Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7(11):833–846.
  • Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944–948.
  • Han D, Antunes F, Canali R, et al. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem. 2003;278(8):5557–5563.
  • Vial G, Dubouchaud H, Couturier K, et al. Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol. 2011;54(2):348–356.
  • Watanabe T, Saotome M, Nobuhara M, et al. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance. Exp Cell Res. 2014;323(2):314–325.
  • Fisher-Wellman KH, Weber TM, Cathey BL, et al. Mitochondrial respiratory capacity and content are normal in young insulin-resistant obese humans. Diabetes. 2014;63(1):132–141.
  • Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622.
  • Matsukawa J, Matsuzawa A, Takeda K, et al. The ASK1-MAP kinase cascades in mammalian stress response. J Biochem. 2004;136(3):261–265.
  • Furler SM, Oakes ND, Watkinson AL, et al. A high-fat diet influences insulin-stimulated post transport muscle glucose metabolism in rats. Metabolism. 1997;46(9):1101–1106.
  • Halseth AE, Bracy DP, Wasserman DH. Limitations to basal and insulin-stimulated skeletal muscle glucose uptake in the high-fat-fed rat. Am J Physiol Endocrinol Metab. 2000;279(5):E1064–E1071.
  • Bonadonna RC, Del Prato S, Bonora E, et al. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes. 1996;45(7):915–925.
  • Kruszynska YT, Mulford MI, Baloga J, et al. Regulation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects. Diabetes. 1998;47(7):1107–1113.
  • Wu R, Smeele KM, Wyatt E, et al. Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury. Circ Res. 2011;108(1):60–69.
  • Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci. 1997;22(12):477–481.
  • Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994;78(6):915–918.
  • Parihar MS, Nazarewicz RR, Kincaid E, et al. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun. 2008;366(1):23–28.
  • Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7(10):1138–1143.
  • Carvalho-Filho MA, Ueno M, Hirabara SM, et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes. 2005;54(4):959–967.
  • Pilon G, Charbonneau A, White PJ, et al. Endotoxin mediated-iNOS induction causes insulin resistance via ONOO− induced tyrosine nitration of IRS-1 in skeletal muscle. PLOS One. 2010;5(12):e15912.
  • Cooppan R, Kozak GP. Hyperthyroidism and diabetes mellitus. An analysis of 70 patients. Arch Intern Med. 1980;140(3):370–373.
  • Dimitriadis GD, Raptis SA. Thyroid hormone excess and glucose intolerance. Exp Clin Endocrinol Diabetes. 2001;109:S225–S239.
  • Gierach M, Gierach J, Junik R. Insulin resistance and thyroid disorders. Endokrynol Pol. 2014;65(1):70–76.
  • Liang Y, Najafi H, Matschinsky FM. Glucose regulates glucokinase activity in cultured islets from rat pancreas. J Biol Chem. 1990;265(28):16863–16866.
  • Ashcroft FM, Harrison DE, Ashcroft SJH. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature. 1984;312(5993):446–448.
  • Wollheim CB, Sharp GWG. Regulation of insulin release by calcium. Physiol Rev. 1981;61(4):914–973.
  • Aguayo-Mazzucato C, Zavacki AM, Marinelarena A, et al. Thyroid hormone promotes postnatal rat pancreatic β-cell development and glucose-responsive insulin secretion through MAFA. Diabetes. 2013;62(5):1569–1580.
  • Furuya F, Shimura H, Yamashita S, et al. Liganded thyroid hormone receptor-alpha enhances proliferation of pancreatic β-cells. J Biol Chem. 2010;285(32):24477–24486.
  • Verga Falzacappa C, Mangialardo C, Madaro L, et al. Thyroid hormone T3 counteracts STZ induced diabetes in mouse. PLOS One. 2011;6(5):e19839.
  • Ohguni S, Notsu K, Kato Y. Correlation of plasma free thyroxine levels with insulin sensitivity and metabolic clearance rate of insulin in patients with hyperthyroid Graves’ disease. Intern Med. 1995;34(5):339–341.
  • Lenzen S, Joost HG, Hasselblatt A. Thyroid function and insulin secretion from the perfused pancreas in the rat. Endocrinology. 1976;99(1):125–129.
  • Fukuchi M, Shimabukuro M, Shimajiri Y, et al. Evidence for a deficient pancreatic β-cell response in a rat model of hyperthyroidism. Life Sci. 2002;71(9):1059–1070.
  • Ximenes HM, Lortz S, Jörns A, et al. Triiodothyronine (T3)-mediated toxicity and induction of apoptosis in insulin-producing INS-1 cells. Life Sci. 2007;80(22):2045–2050.
  • Karbalaei N, Noorafshan A, Hoshmandi E. Impaired glucose-stimulated insulin secretion and reduced β-cell mass in pancreatic islets of hyperthyroid rats. Exp Physiol. 2016;101(8):1114–1127.
  • Dimitriadis G, Baker B, Marsh H, et al. Effect of thyroid hormone excess on action, secretion, and metabolism of insulin in humans. Am J Physiol. 1985;248(5 Pt 1):E593–E601.
  • Brenta G. Diabetes and thyroid disorders. Diabetes Vasc Dis. 2010;10(4):172–177.
  • Ikeda T, Fujiyama K, Hoshino T, et al. Acute effect of thyroid hormone on insulin secretion in rats. Biochem Pharmacol. 1990;40(8):1769–1771.
  • Cavallo-Perin P, Bruno A, Boine L, et al. Insulin resistance in Graves’ disease: a quantitative in-vivo evaluation. Eur J Clin Invest. 1988;18(6):607–613.
  • Sestoft L, Bartels PD, Fleron P, et al. Influence of thyroid state on the effects of glycerol on gluconeogenesis and energy metabolism in perfused rat liver. Biochim Biophys Acta. 1977;499(1):119–130.
  • Singh SP, Snyder AK. Effect of thyrotoxicosis on gluconeogenesis from alanine in the perfused rat liver. Endocrinology. 1978;102(1):182–187.
  • Feng X, Jiang Y, Meltzer P, et al. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000;14(7):947–955.
  • Klieverik LP, Sauerwein HP, Ackermans MT, et al. Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am J Physiol Endocrinol Metab. 2008;294(3):E513–E520.
  • Klieverik LP, Janssen SF, Van Riel A, et al. Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc Natl Acad Sci U S A. 2009;106(14):5966–5971.
  • Weinstein SP, O’Boyle E, Fisher M, et al. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology. 1994;135(2):649–654.
  • Mokuno T, Uchimura K, Hayashi R, et al. Glucose transporter 2 concentrations in hyper- and hypothyroid rat livers. J Endocrinol. 1999;160(2):285–289.
  • Saunders J, Hall SE, Sönksen PH. Glucose and free fatty acid turnover in thyrotoxicosis and hypothyroidism, before and after treatment. Clin Endocrinol (Oxf). 1980;13(1):33–44.
  • Santiago LA, Santiago DA, Faustino LC, et al. The Δ337T mutation on the TRβ causes alterations in growth, adiposity, and hepatic glucose homeostasis in mice. J Endocrinol. 2011;211(1):39–46.
  • Foss MC, Paccola GM, Saad MJ, et al. Peripheral glucose metabolism in human hyperthyroidism. J Clin Endocrinol Metab. 1990;70(4):1167–1172.
  • Weinstein SP, O’Boyle E, Haber RS. Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes. 1994;43(10):1185–1189.
  • Casla A, Rovira A, Wells JA, et al. Increased glucose transporter (GLUT4) protein expression in hyperthyroidism. Biochem Biophys Res Commun. 1990;171(1):182–188.
  • Taylor R, McCulloch AJ, Zeuzem S, et al. Insulin secretion, adipocyte insulin binding and insulin sensitivity in thyrotoxicosis. Acta Endocrinol (Copenh). 1985;109(1):96–103.
  • Matthaei S, Trost B, Hamann A, et al. Effect of in vivo thyroid hormone status on insulin signalling and GLUT1 and GLUT4 glucose transport systems in rat adipocytes. J Endocrinol. 1995;144(2):347–357.
  • Goto H, Sumida Y, Nakatani K, et al. Effect of triiodothyronine on glucose transport in rat adipocytes. Life Sci. 1997;61(2):193–204.
  • Dimitriadis G, Mitrou P, Lambadiari V, et al. Glucose and lipid fluxes in the adipose tissue after meal ingestion in hyperthyroidism. J Clin Endocrinol Metab. 2006;91(3):1112–1118.
  • Dimitriadis G, Mitrou P, Lambadiari V, et al. Insulin-stimulated rates of glucose uptake in muscle in hyperthyroidism: the importance of blood flow. J Clin Endocrinol Metab. 2008;93(6):2413–2415.
  • Shepherd PR, Kahn BB. Glucose transporters and insulin action – implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341(4):248–257.
  • Torrance CJ, Devente JE, Jones JP, et al. Effects of thyroid hormone on GLUT4 glucose transporter gene expression and NIDDM in rats. Endocrinology. 1997;138(3):1204–1214.
  • Voldstedlund M, Tranum-Jensen J, Handberg A, et al. Quantity of Na/K-ATPase and glucose transporters in the plasma membrane of rat adipocytes is reduced by in vivo triiodothyronine. Eur J Endocrinol. 1995;133(5):626–634.
  • Randin JP, Scazziga B, Jéquier E, et al. Study of glucose and lipid metabolism by continuous indirect calorimetry in Graves. J Clin Endocrinol Metab. 1985;61(6):1165–1171.
  • McCulloch AJ, Nosadini R, Pernet A, et al. Glucose turnover and indices of recycling in thyrotoxicosis and primary thyroid failure. Clin Sci (Lond). 1983;64(1):41–47.
  • Dimitriadis GD, Leighton B, Vlachonikolis IG, et al. Effects of hyperthyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat. Biochem J. 1988;253(1):87–92.
  • Clément K, Viguerie N, Diehn M, et al. In vivo regulation of human skeletal muscle gene expression by thyroid hormone. Genome Res. 2002;12(2):281–291.
  • Obregon MJ. Adipose tissues and thyroid hormones. Front Physiol. 2014;5:479.
  • Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci. 2006;63(4):414–434.
  • Venditti P, Di Stefano L, Di Meo S. Vitamin E management of oxidative damage-linked dysfunctions of hyperthyroid tissues. Cell Mol Life Sci. 2013;70(17):3125–3144.
  • Venditti P, Napolitano G, Di Meo S. Role of mitochondria and other ROS sources in hyperthyroidism-linked oxidative stress. IEMAMC. 2015;15(1):5–36.
  • Lee YP, Lardy HA. Influence of thyroid hormones on 1-α-glycerophosphate dehydrogenase and other dehydrogenase in various organs of the rat. J Biol Chem. 1965;240:1427–1436.
  • Dümmler K, Müller S, Seitz HJ. Regulation of adenine nucleotidetranslocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues. Biochem J. 1996;317(3):913–918.
  • Venditti P, Pamplona R, Ayala V, et al. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage. J Exp Biol. 2006;209(5):817–825.
  • Swaroop A, Ramasarma T. Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria. Biochem J. 1985;226(2):403–408.
  • Fernández V, Videla LA. Influence of hyperthyroidism on superoxide radical and hydrogen peroxide production by rat liver submitochondrial particles. Free Radic Res Commun. 1993;18(6):329–335.
  • Venditti P, De Rosa R, Di Meo S. Effect of thyroid state on H2O2 production by rat liver mitochondria. Mol Cell Endocrinol. 2003;205(1–2):185–192.
  • Venditti P, Puca A, Di Meo S. Effect of thyroid state on rate and sites of H2O2 production in rat skeletal muscle mitochondria. Arch Biochem Biophys. 2003;411(1):121–128.
  • Venditti P, Puca A, Di Meo S. Effects of thyroid state on H2O2 production by rat heart mitochondria: sites of production with Complex I and Complex I-linked substrates. Horm Metab Res. 2003;35(1):55–61.
  • Fernández V, Barrientos X, Kipreos K, et al. Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation. Endocrinology. 1985;117(2):496–501.
  • Fong KL, McCay PB, Poyer JL, et al. Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem. 1973;248(22):7792–7797.
  • Fernández V, Videla LA. On the mechanism of thyroid hormone-induced respiratory burst activity in rat polymorphonuclear leukocytes. Free Radic Biol Med. 1995;19(3):359–363.
  • Araujo AS, Diniz GP, Seibel FE, et al. Reactive oxygen and nitrogen species balance in the determination of thyroid hormones-induced cardiac hypertrophy mediated by renin-angiotensin system. Mol Cell Endocrinol. 2011;333(1):78–84.
  • Just WW, Hartl FU, Schimassek H. Rat liver peroxisomes. I. New peroxisome population induced by thyroid hormones in the liver of male rats. Eur J Cell Biol. 1982;26(2):249–254.
  • Huh K, Kwon TH, Kim JS, et al. Role of the hepatic xanthine oxidase in thyroid dysfunction: effect of thyroid hormones in oxidative stress in rat liver. Arch Pharm Res. 1998;21(3):236–240.
  • Elnakish MT, Schultz EJ, Gearinger RL, et al. Differential involvement of various sources of reactive oxygen species in thyroxin-induced hemodynamic changes and contractile dysfunction of the heart and diaphragm muscles. Free Radic Biol Med. 2015;83:252–261.
  • Fernández V, Cornejo P, Tapia G, et al. Influence of hyperthyroidism on the activity of liver nitric oxide synthase in the rat. Nitric Oxide. 1997;1(6):463–468.
  • Ueta Y, Levy A, Chowdrey HS, et al. Hypothalamic nitric oxide synthase gene expression is regulated by thyroid hormones. Endocrinology. 1995;136(10):4182–4187.
  • Cai Y, Manio MM, Leung GPH, et al. Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries. Eur J Pharmacol. 2015;747:18–28.
  • Napoli R, Biondi B, Guardasole V, et al. Impact of hyperthyroidism and its correction on vascular reactivity in humans. Circulation. 2001;104(25):3076–3080.
  • Masullo P, Venditti P, Agnisola C, et al. Role of nitric oxide in the reperfusion induced injury in hyperthyroid rat hearts. Free Radic Res. 2000;32(5):411–421.
  • Venditti P, De Rosa R, Cigliano L, et al. Role of nitric oxide in the functional response to ischemia-reperfusion of heart mitochondria from hyperthyroid rats. Cell Mol Life Sci. 2004;61(17):2244–2252.
  • Oztay F, Ergin B, Ustunova S, et al. Effects of coenzyme Q10 on the heart ultrastructure and nitric oxide synthase during hyperthyroidism. Chin J Physiol. 2007;50(5):217–224.
  • Kuznetsova LA, Derkach KV, Sharova TS, et al. Effect of long-term thyroxine treatment on the activity of NO-synthases in tissues of rats with obesity induced by high-fat diet. Zh Evol Biokhim Fiziol 2015;51(6):431–439.
  • Ignarro LJ Nitric oxide: biology and pathobiology. San Diego: Academic Press; 2000.
  • Carreras MC, Peralta JG, Converso DP, et al. Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O2 uptake. Am J Physiol Heart Circul Physiol. 2001;281(6):H2282–H2288.
  • Asayama K, Kato K. Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med. 1990;8(3):293–303.
  • Videla LA. Energy metabolism, thyroid calorigenesis, and oxidative stress: functional and cytotoxic consequences. Redox Rep. 2000;5(5):265–275.
  • Venditti P, De Leo T, Di Meo S. Antioxidant-sensitive shortening of ventricular action potential in hyperthyroid rats is independent of lipid peroxidation. Mol Cell Endocrinol. 1998;142(1–2):15–23.
  • Joste V, Goitom Z, Nelson BD. Thyroid hormone regulation of nuclear-encoded mitochondrial inner membrane polypeptides of the liver. Eur J Biochem. 1989;184(1):255–260.
  • Kocic R, Radenkovic S, Mikic D, et al. Oxidative stress in the development of diabetes during hyperthyroidism. Postgrad Med J. 1998;74(872):381.
  • Wittmann I, Nagy J. Are insulin resistance and atherosclerosis the consequences of oxidative stress? Diabetologia. 1996;39(8):1002–1003.
  • Newsholme P, Rebelato E, Abdulkader F, et al. Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. J Endocrinol. 2012;214(1):11–20.
  • Asayama K, Kooy NW, Burr IM. Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: decrease of islet manganosuperoxide dismutase. J Lab Clin Med. 1986;107(5):459–464.
  • Gray JP, Heart E. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion. Toxicol Mech Methods. 2010;20(4):167–174.
  • Schoonbroodt S, Piette J. Oxidative stress interference with the nuclear factor-κB activation pathways. Biochem Pharmacol. 2000;60(8):1075–1083.
  • Newsholme P, Haber EP, Hirabara SM, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol. 2007;583(1):9–24.
  • Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochem J. 1987;245(1):243–250.
  • Radi R, Cassina A, Hodara R, et al. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med. 2002;33(11):1451–1464.
  • Crow JP, Beckman JS. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr Top Microbiol Immunol. 1995;196:57–73.
  • Delaney CA, Tyrberg B, Bouwens L, et al. Sensitivity of human pancreatic islets to peroxynitrite-induced cell dysfunction and death. FEBS Lett. 1996;394(3):300–306.
  • Rabinovitch A, Suarez-Pinzon WL. Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev Endocr Metab Disord. 2003;4(3):291–299.
  • Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic β-cell dysfunction. Ann N Y Acad Sci. 2004;1011:168–176.
  • Rizzo MA, Piston DW. Regulation of β cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J Cell Biol. 2003;161(2):243–248.
  • Wiseman DA, Kalwat MA, Thurmond DC. Stimulus-induced S-nitrosylation of Syntaxin 4 impacts insulin granule exocytosis. J Biol Chem. 2011;286(18):16344–16354.
  • Pi J, Bai Y, Zhang Q, et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56(7):1783–1791.
  • Sakai K, Matsumoto K, Nishikawa T, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells. Biochem Biophys Res Commun. 2003;300(1):216–222.
  • Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999;274(39):27905–27913.
  • Krippeit-Drews P, Kramer C, Welker S, et al. Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic β-cells. J Physiol. 1999;514(2):471–481.
  • Leloup C, Tourrel-Cuzin C, Magnan C, et al. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009;58(3):673–681.
  • Jacobson J, Duchen MR. Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem. 2004;256–257(1–2):209–218.
  • Sajadian M, Hashemi M, Salimi S, et al. The effect of experimental thyroid dysfunction on markers of oxidative stress in rat pancreas. Drug Dev Res. 2016;77(4):199–205.
  • Mitrou P, Boutati E, Lambadiari V, et al. Insulin resistance in hyperthyroidism: the role of IL6 and TNFα. Eur J Endocrinol. 2010;162(1):121–126.
  • Stephens JM, Pekala PH. Transcriptional repression of the C/EBP-α and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-α. Regulations is coordinate and independent of protein synthesis. J Biol Chem. 1992;267(19):13580–13584.
  • Rui L, Aguirre V, Kim JK, et al. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 2001;107(2):181–189.
  • Kamata H, Honda S, Maeda S, et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120(5):649–661.
  • Kumar A, Sinha RA, Tiwari M, et al. Hyperthyroidism induces apoptosis in rat liver through activation of death receptor-mediated pathways. J Hepatol. 2007;46(5):888–898.
  • Rotter V, Nagaev I, Smith U.. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and TNFα, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278(46):45777–45784.
  • Senn JJ, Klover PJ, Nowak IA, et al. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002;51(12):3391–3399.
  • Kosmidou I, Vassilakopoulos T, Xagorari A, et al. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. Am J Respir Cell Mol Biol. 2002;26(5):587–593.
  • Klein I, Ojamaa K. Thyroid hormone and blood pressure regulation. In: Laragh JH, Brenner BN, editors. Hypertension: pathophysiology, diagnosis and management. New York: Raven Press Ltd.; 1995.
  • Kobori H, Ichihara A, Suzuki H, et al. Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol. 1997;272(2 Pt 1):E227–E232.
  • Marchant C, Brown L, Sernia C. Renin-angiotensin system in thyroid dysfunction in rats. J Cardiovasc Pharmacol. 1993;22(3):449–455.
  • Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2008;17(2):168–173.
  • Barreto-Chaves MLM, Carrillo-Sepúlveda MA, Carneiro-Ramos MS, et al. The cross talk between thyroid hormones and the renin–angiotensin system. Vascul Pharmacol. 2010;52(3–4):166–170.
  • Gilbert MT, Sun J, Yan Y, et al. Renin gene promoter activity in GC cells is regulated by cAMP and thyroid hormone through Pit-1-dependent mechanisms. J Biol Chem. 1994;269(45):28049–28054.
  • Montiel M, Ruiz M, Jiménez E, et al. Angiotensin converting enzyme in hyper- and hypothyroid rats. Horm Metab Res. 1987;19(2):90–92.
  • Reiners C, Gramer-Kurz E, Pickert E, et al. Changes of serum angiotensin-I-converting enzyme in patients with thyroid disorders. Clin Physiol Biochem. 1988;6(1):44–49.
  • Jiménez E, Ruiz M, Montiel M. Neonatal development of the angiotensin converting enzyme: effect of hypothyroidism. In: Cuezva JM, editor. Endocrine and biochemical development of the fetus and neonate. New York: Plenum Press; 1990.
  • Fukuyama K, Ichiki T, Takeda K, et al. Down regulation of vascular angiotensin II type 1 receptor by thyroid hormone. Hypertension. 2003;41(3):598–603.
  • Sernia C, Marchant C, Brown L, et al. Cardiac angiotensin receptors in experimental hyperthyroidism in dogs. Cardiovasc Res. 1993;27(3):423–428.
  • Kim GY, Lee JW, Ryu HC, et al. Proinflammatory cytokine IL-1β stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis. J Immunol. 2010;184(7):3946–3954.
  • Dikalov SI, Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal 2013;19(10):1085–1094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.