192
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Ozone-induced damage of fibrinogen molecules: identification of oxidation sites by high-resolution mass spectrometry

, , , , , , & ORCID Icon show all
Pages 430-455 | Received 08 May 2018, Accepted 21 Mar 2019, Published online: 23 May 2019

References

  • Shacter E, Williams JA, Lim M, et al. Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Radic Biol Med.1994;17:429–437.
  • Blombäck B. Fibrinogen and fibrin – proteins with complex roles in hemostasis and thrombosis. Thromb Res.1996;83:1–75.
  • Medved L, Weisel JW; Fibrinogen and Factor XIII Subcommittee of Scientific Standardization Committee of International Society on Thrombosis and Haemostasis. Recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost. 2009;7:355–359.
  • Weisel JW, Medved L. The structure and function of the αC domains of fibrinogen. Ann N Y Acad Sci. 2006;936:312–327.
  • Litvinov RI, Yakovlev S, Tsurupa G, et al. Direct evidence for specific interactions of the fibrinogen alphaC-domains with the central E region and with each other. Biochemistry. 2007;46:9133–9142.
  • Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013;121:1712–1719.
  • Weisel JW, Litvinov RI. Fibrin formation, structure and properties. Subcell Biochem. 2017;82:405–456.
  • Zhmurov A, Protopopova AD, Litvinov RI, et al. Structural basis of interfacial flexibility in fibrin oligomers. Structure. 2016;24:1907–1917.
  • Medved’ L, Ugarova T, Veklich Y, et al. Electron microscope investigation of the early stages of fibrin assembly. Twisted protofibrils and fibers. J Mol Biol. 1990;216:503–509.
  • Lord ST. Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr Opin Hematol. 2007;14:236–241.
  • Martinez M, Weisel JW, Ischiropoulos H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radic Biol Med. 2013;65:411–418.
  • Rosenfeld MA, Shchegolikhin AN, Bychkova AV, et al. Ozone-induced oxidative modification of fibrinogen: role of the D regions. Free Radic Biol Med. 2014;77:106–120.
  • Štikarová J, Kotlín R, Riedel T, et al. The effect of reagents mimicking oxidative stress on fibrinogen function. ScientificWorldJ. 2013;2013:1.
  • Becatti M, Marcucci R, Bruschi G, et al. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler Thromb Vasc Biol. 2014;34:1355–1361.
  • Becatti M, Emmi G, Silvestri E, et al. Neutrophil activation promotes fibrinogen oxidation and Thrombus formation in Behçet disease. Circulation. 2016;133:302–311.
  • Colombo G, Clerici M, et al. A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation. Biochim Biophys Acta. 2015;1850:1–12.
  • Burney PR, White N, Pfaendtner J. Structural effects of methionine oxidation on isolated subdomains of human fibrin D and αC regions. PLoS One. 2014;9:e86981.
  • Weigandt KM, White N, Chung D, et al. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys J. 2012;103:2399–2407.
  • White NJ, Wang Y, Fu X, et al. Post-translational oxidative modification of fibrinogen is associated with coagulopathy after traumatic injury. Free Radic Biol Med.2016;96:181–189.
  • Rosenfeld MA, Bychkova AV, Shchegolikhin AN, et al. Fibrin self-assembly is adapted to oxidation. Free Radic Biol Med.2016;95:55–64.
  • Tetik S, Kaya K, Demir M, et al. Oxidative modification of fibrinogen affects its binding activity to glycoprotein (GP) IIb/IIIa. Clin Appl Thromb Hemost. 2010;16:51–59.
  • Bychkova AV, Vasilyeva AD, Bugrova AE, et al. Oxidation-induced modification of the fibrinogen polypeptide chains. Dokl Biochem Biophys. 2017;474:173–177.
  • Rosenfeld MA, Leonova VB, Shchegolikhin AN, et al. Oxidized modification of fragments D and E from fibrinogen induced by ozone. Biochemistry Moscow. 2010;75:1285–1293.
  • Sharma VK, Graham N. Oxidation of amino acids, peptides and proteins by ozone: a review. Ozone Sci Eng. 2010;32:81–90.
  • Rosenfeld MA, Razumovskii SD, Shchegolikhin AN, et al. Nature of active intermediate particles formed during ozone-induced oxidation. Dokl Biochem Biophys. 2015;461:139–141.
  • Berlett BS, Levine RL, Stadtman ER. Comparison of the effects of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. J Biol Chem. 1996;271:4177–4182.
  • Smith CE, Stack MS, Johnson DA. Ozone effects on inhibitors of human neutrophil proteinases. Arch Biochem Biophys.1987;253:146–155.
  • Rosenfeld MA, Bychkova AV, Shchegolikhin AN, et al. Ozone-induced oxidative modification of plasma fibrin-stabilizing factor. Biochim Biophys Acta. 2013;1834:2470–2479.
  • Doolittle RF, Schubert D, Schwartz SA. Amino acid sequence studies on artiodactyl fibrinopeptides. I. Dromedary camel, mule deer, and cape buffalo. Arch Biochem Biophys. 1967;118:456–467.
  • Ishihama Y, Rappsilber J, Andersen JS, et al. Microcolumns with self-assembled particle frits for proteomics. J Chromatogr A. 2002;979:233–239.
  • Vasilyeva A, Yurina L, Indeykina M, et al. Oxidation-induced modifications of the catalytic subunits of plasma fibrin-stabilizing factor at the different stages of its activation identified by mass spectrometry. Biochim Biophys Acta. 2018;1866:875–884.
  • Han X, He L, Xin L, et al. PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. J Proteome Res. 2011;10:2930–2936.
  • Verrastro I, Pasha S, Jensen K, et al. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules. 2015;5:378–411.
  • Zhang J, Xin L, Shan B, et al. De novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics. 2012;11:M111.010587.
  • Pattison DI, Davies MJ. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol. 2001;14:1453–1464.
  • Meh DA, Siebenlist KR, Mosesson MW. Identification and characterization of the thrombin binding sites on fibrin. J Biol Chem. 1996;271:23121–23125.
  • Pechik I, Madrazo J, Mosesson MW, et al. Crystal structure of the complex between thrombin and the central “E” region of fibrin. Proc Natl Acad Sci USA. 2004;101:2718–2723.
  • Rosenfeld MA, Vasilyeva AD, Yurina LV, et al. Oxidation of proteins: is it a programmed process?. Free Radic Res. 2018;52:14–38.
  • Levine RL, Berlett BS, Moskovitz J, et al. Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev. 1999;107:323–332.
  • Siebenlist KR, DiOrio JP, Budzynski AZ, et al. The polymerization and thrombin-binding properties of des-(B beta 1-42)-fibrin. J Biol Chem. 1990;265:18650–18655.
  • Vadseth C, Souza JM, Thomson L, et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem. 2004;279:8820–8826.
  • Shacter E, Williams JA, Levine RL. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic Biol Med.1995;18:815–821.
  • Kononova O, Litvinov RI, Zhmurov A, et al. Molecular mechanisms, thermodynamics, and dissociation kinetics of knob-hole interactions in fibrin. J Biol Chem. 2013;288:22681–22692.
  • Okumura N, Gorkun OV, Lord ST. Severely impaired polymerization of recombinant fibrinogen gamma-364 Asp –> His, the substitution discovered in a heterozygous individual. J Biol Chem. 1997;272:29596–29601.
  • Kostelansky MS, Bolliger-Stucki B, Betts L, et al. B beta Glu397 and B beta Asp398 but not B beta Asp432 are required for “B:b” interactions. Biochemistry. 2004;43:2465–2474.
  • Everse SJ, Spraggon G, Veerapandian L, et al. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry. 1998;37:8637–8642.
  • Marchi RC, Carvajal Z, Boyer-Neumann C, et al. Functional characterization of fibrinogen Bicetre II: a gamma 308 Asn–>Lys mutation located near the fibrin D:D interaction sites. Blood Coagul Fibrinolysis. 2006;17:193–201.
  • Bowley SR, Lord ST. Fibrinogen variant BβD432A has normal polymerization but does not bind knob. “B”. Blood. 2009;113:4425–4430.
  • Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA. 2000;97:14156–14161.
  • Tsurupa G, Hantgan RR, Burton RA, et al. Structure, stability, and interaction of the fibrin(ogen) αC-domains. Biochemistry. 2009;48:12191–12201.
  • Luo S, Levine RL. Methionine in proteins defends against oxidative stress. FASEB J. 2009;23:464–472.
  • Lim J, Kim G, Levine R. Methionine in proteins: it’s not just for protein initiation anymore. Neurochem Res. 2018;44:247–257.
  • Yee VC, Pratt KP, Côté HC, et al. Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen. Structure. 1997;5:125–138.
  • Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997;389:455–462.
  • Everse SJ, Spraggon G, Veerapandian L, et al. Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly–His–Arg–Pro-amide. Biochemistry. 1999;38:2941–2946.
  • Kostelansky MS, Betts L, Gorkun OV, et al. crystal structures of recombinant fibrinogen fragment D with and without two peptide ligands: GHRP binding to the ‘b’ site disrupts its nearby calcium-binding site. Biochemistry. 2002;41:12124–12132.
  • Vizcaíno JA, Csordas A, del-Toro N, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(D1):D447–D456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.