205
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Formation of two centre three electron bond by hydroxyl radical induced reaction of thiocoumarin: evidence from experimental and theoretical studies

, & ORCID Icon
Pages 629-640 | Received 08 Jan 2019, Accepted 03 May 2019, Published online: 27 May 2019

References

  • Davies MJ, Forni LG, Shuter SL. Electron spin resonance and pulse radiolysis studies on the spin trapping of sulphur-centered radicals. Chem Biol Interact. 1987;61(2):177–188.
  • Sharma VK, Luther GW, Millero FJ. Mechanisms of oxidation of organosulfur compounds by ferrate(VI). Chemosphere. 2011;82(8):1083–1089.
  • Asmus KD. Sulfur-centered free radicals. Methods Enzymol. 1990;186:168–180.
  • Abedinzadeh Z. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest. Can J Physiol Pharmacol. 2001;79(2):166–170.
  • Chatgilialoglu C, Asmus KD. Sulfur-centered reactive intermediates in chemistry and biology. NATO ASI Ser A. 1990;197:1–451.
  • Asmus KD. Stabilization of oxidized sulfur centers in organic sulfides. Radical cations and odd-electron sulfur–sulfur bonds. Acc Chem Res. 1979;12(12):436–442.
  • Alfassi ZB S-centered radicals. 1st ed. Chichester, UK: John Wiley & Sons Ltd.; 1999.
  • Dey GR, Naik DB, Kishore K, et al. Kinetic and spectral characteristics of transients formed in the pulse radiolysis of phenylthiourea in aqueous solution. Radiat Phys Chem. 1994;43(4):365–369.
  • Sperandio B, Polard P, Ehrlich DS, et al. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol. 2005;187(11):3762–3778.
  • Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J Nutr. 2006;136(6 Suppl):1636S–1640S.
  • Jozefczak M, Remans T, Vangronsveld J, et al. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 2012;13(3):3145–3175.
  • Yu J, Zhou CZ. Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins. 2007;68(4):972–979.
  • Tandoğan B, Ulusu NN. The inhibition kinetics of yeast glutathione reductase by some metal ions. J Enzyme Inhib Med Chem. 2007;22(4):489–495.
  • Glass RS. Cation radicals of organosulphur compounds. Xenobiotica. 1995;25(7):637–651.
  • Sáez GT, Bannister WH, Vina J. Glutathione: metabolism and physiological functions. 1st ed. Boca Raton, FL: CRC Press; 1990.
  • Wardman P. Thiol reactivity towards drugs and radicals: some implications in the radiotherapy and chemotherapy of cancer. In Chatgilialoglu C, Asmus KD, editors. Sulfur-centered reactive intermediates in chemistry and biology, NATO ASI Ser A, Life Sciences. New York:Plenum Press; 1990;197. p. 415–427.
  • Simic MG, Hunter EPL. Reaction mechanisms of peroxyl and C-centered radicals with sulfhydryls. Free Radic Biol Med. 1986;2(3):227–230.
  • Capizzi RL. Clinical status and optimal use of amifostine. Oncology. 1999;13(1):47–59.
  • Grdina DJ, Sigdestad CP. Radiation protectors: the unexpected benefits. Drug Metab Rev. 1989;20(1):13–42.
  • Filipiak P, Bobrowski K, Hug GL, et al. Formation of a three-electron sulfur–sulfur bond as a probe for interaction between side chains of methionine residues. J Phys Chem B. 2016;120(36):9732–9744.
  • Hiller KO, Masloch B, Goebl M, et al. Mechanism of the hydroxyl radical induced oxidation of methionine in aqueous solution. J Am Chem Soc. 1981;103(10):2734–2743.
  • Bobrowski K, Pogocki D, Schöneich C. Mechanism of the hydroxyl radical-induced decarboxylation of 2-(alkylthio)ethanoic acid derivatives. J Phys Chem. 1993;97(51):13677–13684.
  • Bobrowski K, Pogocki D, Schöneich C. Oxidation of (carboxyalkyl)thiopropionic acid derivatives by hydroxyl radicals. Mechanisms and kinetics of competitive inter- and intramolecular formation of σ- and σ*-type sulfuranyl radicals. J Phys Chem A. 1998;102(51):10512–10521.
  • Bobrowski K, Hug GL, Pogocki D, et al. Sulfur radical cation − peptide bond complex in the one-electron oxidation of S-methylglutathione. J Am Chem Soc. 2007;129(29):9236–9245.
  • Glass RS, Hug GL, Schöneich C, et al. Neighboring amide participation in thioether oxidation: relevance to biological oxidation. J Am Chem Soc. 2009;131(38):13791–13805.
  • Varmenot N, Bergès J, Abedinzadeh Z, et al. Spectral, kinetic, and theoretical studies of sulfur-centered reactive intermediates derived from thioethers containing an Acetyl Group. J Phys Chem A. 2004;108(30):6331–6346.
  • Pogocki D, Bobrowski K. Oxidative degradation of thiaproline derivatives in aqueous solutions induced by •OH radicals. Isr J Chem. 2014;54(3):321–332.
  • Schöneich C, Pogocki D, Hug GL, et al. Free radical reactions of methionine in peptides: mechanisms relevant to β-amyloid oxidation and Alzheimer’s disease. J Am Chem Soc. 2003;125(45):13700–13713.
  • Pogocki D, Schöneich C. Computational characterization of sulfur-cxygen-bonded sulfuranyl radicals derived from alkyl- and (carboxyalkyl)thiopropionic acids: evidence for sigma-type radicals. J Org Chem. 2002;67(5):1526–1535.
  • Müller R, Heinze J. Stabilization of oxidized sulfur and selenium centers in organic chalcogens by three-electron sulfur–sulfur, selenium–selenium, and sulfur–selenium bonds. A theoretical study using the semiempirical parimetric method 3 (PM3). Phosphorus Sulfur Silicon Relat Elem. 1998;141(1):111–134.
  • Neta P, Schuler RH. Rate constants for reaction of hydrogen atoms with compounds of biochemical interest. Radiat Res. 1971;47(3):612–627.
  • Ramnani SP, Dhanya S, Bhattacharyya PK. Pulse radiolytic studies on the oxidation of 1,3 dithiolane 2-thione (ETTC) by OH radicals in aqueous media. Int J Rad Appl Instr C Rad Phys Chem. 1990;36(3):409–413.
  • Asmus KD, Bensasson RV, Bernier JL, et al. One-electron oxidation of ergothioneine and analogues investigated by pulse radiolysis: redox reaction involving ergothioneine and vitamin C. Biochem J. 1996;315(2):625–629.
  • Wang W, Schuchmann MN, Schuchmann H, et al. Radical cations in the OH-radical-induced oxidation of thiourea and tetramethylthiourea in aqueous solution. J Am Chem Soc. 1999;121(1):238–245.
  • Mishra B, Priyadarsini KI, Mohan H. Effect of pH on one-electron oxidation chemistry of organoselenium compounds in aqueous solutions. J Phys Chem A. 2006;110(5):1894–1900.
  • Prasanthkumar KP, Suresh CH, Aravindakumar CT. Oxidation reactions of 2-thiouracil: a theoretical and pulse radiolysis study. J Phys Chem A. 2012;116(44):10712–10720.
  • Prasanthkumar KP, Suresh CH, Aravindakumar CT. Dimer radical cation of 4-thiouracil: a pulse radiolysis and theoretical study. J Phys Org Chem. 2013;26(6):510–516.
  • Prasanthkumar KP, Alvarez-Idaboy JR, Kumar PV, et al. Contrasting reactions of hydrated electron and formate radical with 2-thio analogues of cytosine and uracil. Phys Chem Chem Phys. 2016;18(41):28781–28790.
  • Maresca A, Temperini C, Pochet L, et al. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem. 2010;53(1):335–344.
  • Toy AA, Chaffey-Millar H, Davis TP, et al. Thioketone spin traps as mediating agents for free radical polymerization processes. Chem Commun (Camb). 2006:835–837.
  • Ninomiya M, Aoki T, Adfa M, et al. Comparison of antitermite properties of 2-thioxocoumarins against Coptotermes formosanus Shiraki. Holzforschung. 2014;68:361–365.
  • Shinde RG, Khan AA, Barik A. Colorimetric and fluorescence signalling of thioesculetin in presence of oxidising agent. J Chem Sci. 2018;130(4):34.
  • Guha SN, Moorthy PN, Kishore K, et al. One-electron reduction of thionine studied by pulse radiolysis. Proc Indian Acad Sci Chem Sci. 1987;99:261–271.
  • Buxton GV, Stuart CR. Re-evaluation of the thiocyanate dosimeter for pulse radiolysis. Faraday Trans. 1995;91(2):279–281.
  • Spinks JWT, Woods RJ. An introduction to radiation chemistry. 3rd ed. New York: Wiley Interscience; 1990.
  • Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993;14(11):1347–1363.
  • Stephens PJ, Devlin FJ, Chabalowski CF, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98(45):11623–11627.
  • Schmider HL, Becke AD. Optimized density functionals from the extended G2 test set. J Chem Phys. 1998;108(23):9624–9631.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37(2):785–789.
  • Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378–6396.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09,. Wallingford CT: Gaussian Inc.; 2009.
  • Chatgilialoglu C, Ferreri C, Bazzanini R, et al. Models of DNA C1’ radicals. Structural, spectral, and chemical properties of the thyminylmethyl radical and the 2’-deoxyuridin-1’-yl radical. J Am Chem Soc. 2000;122(39):9525–9533.
  • Chatgilialoglu C, Guerra M, Mulazzani QG. Model studies of DNA C5’ radicals. Selective generation and reactivity of 2’-deoxyadenosin-5’-yl radical. J Am Chem Soc. 2003;125(13):3839–3848.
  • Barik A, Priyadarsini KI, Mohan H. Redox reactions of 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) in aqueous solution. Radiat Phys Chem. 2004;70(6):687–696.
  • Lehninger AL, Nelson DL, Cox MM. Principles of biochemistry. 3rd ed. New York: Worth Publishers; 2000.
  • Mönig J, Goslich R, Asmus K-D. Thermodynamics of S∴S 2σ/lσ* three-electron bonds and deprotonation kinetics of thioether radical cations in aqueous solution. Ber Bunsenges Phys Chem. 1986;90(2):115–121.
  • Asmus KD, Bonifacic M, Alfassi ZB. S-centered radicals. Chichester. U.K.: John Wiley & Sons Ltd.; 1999. 5, Sulfur-centered reactive intermediates as studied by radiation chemical and complementary techniques. p. 141–191.
  • Glass RS. Topics in current chemistry, Berlin, Heidelberg: Springer; 1999. 1, Sulfur radical cations. p. 1–87.
  • Asmus KD, Chatgiliaoglu C. Sulfur-centered reactive intermediates in chemistry and biology. New York: Plenum Press; 1990.
  • Barik A, Singh BG, Sharma A, et al. Pulse radiolysis studies of 3,5-dimethyl pyrazole derivatives of selenoethers. J Phys Chem A. 2014;118(44):10179–10187.
  • Mönig J, Asmus KD, Forni LG, et al. On the reaction of molecular oxygen with thiyl radicals: a re-examination. Int J Radiat Biol Relat Stud Phys Chem Med. 1987;52(4):589–602.
  • Dey GR, Naik DB, Kishore K, et al. Nature of the transient species formed in the pulse radiolysis of some thiourea derivatives. J Chem Soc, Perkin Trans 2. 1994:1625–1629
  • Nauser T, Koppenol WH, Schöneich C. Reversible hydrogen transfer reactions in thiyl radicals from cysteine and related molecules: absolute kinetics and equilibrium constants determined by pulse radiolysis. J Phys Chem B. 2012;116(18):5329–5341.
  • Scott SL, Chen WJ, Bakac A, et al. Spectroscopic parameters, electrode potentials, acid ionization constants, and electron exchange rates of the 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonate) radicals and ions. J Phys Chem. 1993;97(25):6710–6714.
  • Bird CL, Kuhn AT. Electrochemistry of the viologens. Chem Soc Rev. 1981;10(1):49–82.
  • Erdogdu Y. Investigations of FT-IR, FT-Raman, FT-NMR spectra and quantum chemical computations of esculetin molecule. Spectrochim Acta A. 2013;106:25–33.
  • Nicolaescu AR, Wiest O, Kamat PV. Mechanistic pathways of the hydroxyl radical reactions of quinoline. 2. Computational analysis of hydroxyl radical attack at C atoms. J Phys Chem A. 2005;109(12):2829–2835.
  • Kumar PV, Singh BG, Phadnis PP, et al. Effect of molecular interactions on electron-transfer and antioxidant activity of bis(alkanol)selenides: a radiation chemical study. Chemistry. 2016;22(34):12189–12198.
  • Korzeniowska-Sobczuk A, Hug GL, Carmichael I, et al. Spectral, kinetics, and theoretical studies of radical cations derived from thioanisole and its carboxylic derivative. J Phys Chem A. 2002;106(40):9251–9260.
  • Macrae RM, Carmichael I. Density functional studies of hydrogen atom addition to the C = S Bond. J Phys Chem A. 2001;105:3641–3651.
  • Neta P. Reactions of hydrogen atoms in aqueous solutions. Chem Rev. 1972;72(5):533–543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.